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Executive Summary
In this deliverable, we report on the validation of the existing prototypes for verifiable online voting, health

insurance, university diploma record management and Cardano update system based on the requirements [PRI18]
and the specified validation criteria [PRI20a].
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Chapter 1

Introduction

In the PRIViLEDGE project, four prototypes have been developed focusing on using DLT or secure multi-
party computation for the benefit of online voting, health insurance, university diploma record management and
software updates in the Cardano stake-based ledger. These prototypes validate the feasibility of using DLT or
secure multi-party computation to solve use-case specific problems.

The development of these prototypes started with identifying the requirements [PRI18], developing the ar-
chitecture to satisfy these requirements [PRI20b, PRI20c], the definition of the validation criteria [PRI20a] and
the actual implementation itself.

In this deliverable, we report on the validation of the existing prototypes based on the requirements [PRI18]
and the specified validation criteria [PRI20a].

In Section 2, the results of requirements, protocol and implementation validation are presented for the online
voting use-case.

In Section 3, the results of functional, security and performance validation are presented for the health-
insurance use-case.

Validation of functional and non-functional aspects, together with usability, interoperability and deployment
validation for the university diploma use-case is presented in Section 4

The report ends with the validation of the update system for the Cardano stake-based ledger, using the
property testing approach in Section 5.

1



Chapter 2

Validation Results—Use Case 1: Verifiable
Online Voting With Ledgers

2.1 Requirements validation

The Tiviledge online voting system uses the general-purpose permissioned blockchain Hyperledger Fabric (HLF)
as the bulletin board technology, implementing the online voting auditing functionality as a smart contract (chain-
code in HLF terminology).

Tiviledge provides secure, usable and transparent online voting by using a protocol that makes it possible,
in addition to voter verifiability, to prove to an independent auditor, in a voter privacy preserving manner, that
all accepted votes were stored, sent to the tabulation according to the election rules, and decrypted/tabulated
correctly.

2.1.1 Validation of compatibility with EU recommendations

In the requirements validation process we have analyzed the compatibility of the requirements of online voting
use-case with the EU recommendation on standards for e-voting ( [CoE17]).

The EU recommendation contains 49 recommendations in following categories:

– Universal suffrage;

– Equal suffrage;

– Free suffrage;

– Secret suffrage;

– Regulatory and organisational requirements;

– Transparency and observation;

– Accountability;

– Reliability and security of the system.

Many recommendations are not directly about the voting technology, but more about the organization of the
election. However, the voting technology can support the election organization in achieving the recommended
goal. We strongly agree and endorse the recommendations and the Tiviledge is compatible with EU recommen-
dations.
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2.1.2 Validation of functional and non-functional requirements

Verification results of basic functional and non-functional requirements are provided in Table 2.1 and Table 2.2
respectively.

The requirements and the validation criteria can be found in the PRIViLEDGE deliverables [PRI18] and
[PRI20a] respectively.

Table 2.1: Functional requirements verification.

ID Requirement Status Reasoning
EA-1 The system must have a possibil-

ity to generate keys for elections.
Satisfied Election Organizer can use Key appli-

cation for key pair generation and vote
decryption.

EA-2 The system must have an election
bulletin board.

Satisfied The election bulletin board is being
held inside the Ledger with Election
Organizer and Auditor organizations.

EA-3 The system must have a possibil-
ity to publish votes to the bulletin
board.

Satisfied Votes are saved locally and rerandom-
ized commitments are published to the
bulletin board by VoteCollector.

EA-4 The system must have a possi-
bility to publish election config-
uration and results to the bulletin
board.

Satisfied These actions can be made with Elec-
tionManager and their appearance on
the bulletin board can be checked with
VoteApp.

EA-5 The system must have a possibil-
ity to validate published votes and
election results.

Satisfied Verification of public records and elec-
tion results are made in VoteCollec-
tor and Ledger. Whereas same ver-
ifications can be made by anyone in
VoteApp.

VOT-1 The system must have a possibil-
ity to cast vote.

Satisfied Voters are using VoteApp for vote cast-
ing.

VOT-2 The system must have a possibil-
ity for Voters to access the bul-
letin board.

Satisfied Voters can access the bulletin board via
VoteApp and make different verifica-
tion to public records, election configu-
ration and election results.

AUD-1 The system must be set up with
Auditor participation.

Satisfied Auditor participates in Ledger creation
by representing his organization in the
network.

AUD-2 The system must have a possibil-
ity for votes, election configura-
tion and election results verifica-
tion.

Satisfied The same as in the EA-5 verifications
are made with VoteCollector, Ledger
and VoteApp.

3
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Table 2.2: Non-functional requirements verification.

ID Requirement Status Reasoning
NF-1 The applications web interface

should be simple and intuitive to
use.

Satisfied The web interface is a wizard-like pro-
cess, familiar to the voters from variety
of online voting applications.

NF-2 The applications web interface
should change it’s dimensions ac-
cording to the screen resolution.

Satisfied VoteApp and ElectionManager change its
user interface according to the screen
size and additional testing was made with
Google Mobile-Friendly test which con-
cluded that the page is mobile-friendly
(see Figure 2.7).

NF-3 The applications web interface
should be mobile friendly.

Satisfied The same as with NF-2 requirement, Fig-
ure 2.7 shows that both VoteApp and
ElectionManager are mobile-friendly.

NF-4 The vote casting process for voter
should take no more than 5 sec-
onds.

Partially satis-
fied.

With a high number of choices casting
time takes longer than 5 seconds, there-
fore this requirement is satisfied only with
a small number of choices.

2.2 Protocol validation

We shall revisit each property from the validation criteria [PRI20a] and provide an update about its status in the
prototype implementation. Not all properties are satisfied in the prototype, since the focus of the prototype is on
the role of the DLT. Topics that might be covered differently in the production setting include voter verifiability,
eligibility verification and election key management.

ID Requirement Status Reasoning
P-1 (C) A voter can post exactly 1 choice

from set of n candidates as a vote
to a ballot box.

Satisfied The protocol ensures this property by apply-
ing ZKPs of well-formedness. This ZKPs
have been implemented and tested.

P-2 (C) A voter can post up to m un-
ordered choices from set of n can-
didates as a vote to a ballot box.

Out-of-scope Without the loss of generality this property is
omitted from the scope of the prototype. In
case a practical need arises for MofN instead
of 1ofN, the zero knowledge proofs can be
adjusted without changing the protocol itself.

4
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P-3 (C) Only persons from the set of el-
igible voters can post votes to a
ballot box and bulletin board.

Satisfied The protocol leaves the details of eligibility
verification open, the implementation takes
advantage of digital signature based one-time
credentials. In production deployment there
may be other eligibility verification methods
to be supported, additionally the strength of
the credential management process is crucial
to achieving this property, since the online
voting system does not determine eligibility
directly, but rather relies on the validity of a
credential.
The property can be validated by an Auditor
on the election basis.

P-4 (C) Only votes cast during specified
time (the voting period) can be
accepted into the ballot box.

Satisfied The property is implemented and tested, it
can be validated by an Auditor on the elec-
tion basis.

P-5 (C) Voter may re-vote unlimited num-
ber of times during the voting pe-
riod.

Satisfied The property is implemented and tested.

P-6 (I) Posted votes are available after
the end of the voting period.

Satisfied The property is implemented and tested. It
can be monitored by an Auditor on the elec-
tion basis, that the published votes shall go
into the tally.

P-7 (I) Tally results must not be pub-
lished before the end of a voting
period.

Partially out-
of-scope

The property is implemented and tested,
however – the election private key manage-
ment is not in the scope of the prototype,
therefore we do not apply any threshold de-
cryption techniques. This means that a single
election administrator could tally the prelim-
inary result, in case access to the votes was
provided. We consider the threshold decryp-
tion either with or without the trusted dealer
a solved issue from the view point of online
voting protocols, meaning that this property
is relatively easy to support in a future pro-
duction version.

P-8 (I) In case there are several votes for
any single voter, only the last one,
according to the bulletin board is
taken into account in the tally.

Satisfied The property is implemented and tested. The
fact that the latest vote is taken into account
can be validated by the Voter herself on the
election basis.

5
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P-9 (I) Votes may be excluded from the
tally upon request.

Satisfied The property is implemented and tested. The
revocation can be validated by an Auditor on
the election basis. Note, however, that the le-
gitimacy of the record in the revocation list
is not straightforward to validate. In the pro-
duction, the revocation lists should be e.g.
digitally signed by an authorized entity.

P-10 (P) Voter’s choice is not leaked for
any of the stored votes.

Partially out-
of-scope

Please refer to property P-7 (I). In the context
of the online voting protocol where all votes
are encrypted with some key, this property
is a policy decision that can be enforced by
measures such as threshold decryption.

P-11 (P) No-one is capable of learning
which choices a particular voter
made for any of the posted votes.

Partially out-
of-scope

For the data published on the ledger, this
property follows from the proper implemen-
tation of the protocol. However, similarly to
P-7 (I) and P-10 (P), this property must be
enforced with measures such as threshold de-
cryption to mitigate against malicious elec-
tion officials with access to individual votes
prior to the homomorphic aggregation.

P-12 (P) Voter cannot prove to a third party
the candidate she voted for.

Satisfied This property follows from the protocol.
Voter cannot construct a cryptographic re-
ceipt to prove voting for some candidate.
Non-cryptographic proofs – e.g. screenshot
of the voting application – can still be con-
structed, but these are not irrefutable.

P-13 (V) Voter can verify that she commu-
nicates with the application/ser-
vice which is in control of Elec-
tion Official.

Out-of-scope This property is relevant in the production
setting, where there must exist trusted chan-
nels to publish the URLs and information
about the validation of site certificates to the
end-user.

P-14 (V) Voter can verify that her posted
vote correctly reflects her choice
from a set of candidates.

Out-of-scope The cast-as-intended property could be en-
sured by either using Benaloh challenges or
Estonian style vote verification with different
device. The protocol is compatible with both
methods. The implementation of the proto-
type provides the voter with accepted-as-cast
assurance.

6
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P-15 (V) System can detect that posted
vote was not tampered with.

Satisfied This property has been implemented and
tested, it follows both from the use of digital
signatures to sign the votes and the availabil-
ity of election data for an audit.

P-16 (V) System can detect that stored or
posted vote is invalid.

Satisfied The property follows from the protocol. The
application of zero knowledge proofs makes
it possible to detect invalid votes.

P-17 (V) The auditor can verify that the
ballot box and the bulletin board
contains votes only from eligible
voters.

Satisfied Please see property P-3 (C) – the auditor gets
access to the data necessary to verify this
property on election basis.

P-18 (V) The auditor can verify that the set
of posted votes sent for tallying is
the same as the set of posted votes
accepted from the eligible voters.

Satisfied The property follows from the protocol,
please refer to P-16 and P-17.

P-19 (V) The auditor can verify that votes
excluded from the tally were re-
voked on purpose.

Satisfied Please see P-9 (I). The auditor has access to
the data required for this validation.

2.3 Implementation validation

The pilot implementation of the protocol supports the simulation of all core activities of the online voting—setup
with DLT, voting, tallying and auditing. Both ceremonies to carry out these activities and tools to support the
process exist.

This section describes testing methods used to verify that implemented online voting system fulfils desired
functional and non-functional requirements.

Most of the testing processes were done on a local machine, see Table 2.4 for machine configuration. End-
to-end testing was done in the Amazon Web Services cloud environment.

Table 2.4: Testing machine hardware and operating system info.

Operating system Ubuntu 18.04.4 LTS
Operating system type 64-bit
Linux kernel version 4.15.0-88-generic
CPU Intel i5-7260U
RAM 16 GB

2.3.1 Unit testing

The pilot implementation is developed mostly in the Go programming language. It consists of following modules
with respective test coverage:

– HLF chaincode (80.1%)

– Common types module (97.2%)

– Bulletinboard module (96.3%)

7
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– Commitment consistent encryption module (87.1%)

– Election definition module (100.0%)

– Voter list definition module (98.8%)

– Randomness module (66.7%)

– Voting protocol module (97.1%)

– Election key management tool (31.0%)

– Voter credential management tool (57.0%)

– Post-processing tool (77.3%)

There are altogether 4274 lines of code, 79.5% of which are covered with automated unit tests that focus on
the correctness of any given module. These automated tests have proven to be useful in detecting the regression
during the implementation phase.

We consider the overall percentage sufficient coverage, since the major use-cases and handling of main
exceptions are covered. There is room for improvement in certain modules. However, automated unit testing is
complemented by manual end-to-end testing.

2.3.2 End-to-end testing

The manual end-to-end testing was used to validate that the pilot implementation covers all major use-cases –
setup, voting, tallying and auditing in repeatable manner. The end-to-end testing is focused on the interoperability
of all components of the system.

For the basic end-to-end testing, the whole system was set up locally. Four different elections were created
where the number of choices ranges from 2 to 1100 to represent different kind of elections. Multiple votes were
cast in each election to understand how the number of choices affects computation time for the voter to cast a
vote.

Following phases were tested – setup phase, voting phase, tallying phase. Makefiles, templates and Docker
containers were used to automate the set-up of the test infrastructure both in the local and AWS environment.

Testing setup phase

For testing, the tester simulated the activities of participants in the setup phase.
Firstly, Election Organizer and Auditor set up a Ledger with two organizations, they both create a consortium

where they agree on who can add, read and modify information inside the Ledger and on what conditions. Then
Election Organizer makes different operations to finalize the system initialization:

1. Creates a Public Key Infrastructure (PKI) to give authentication and signing possibility to voters.

2. Generates identities for VoteCollector and ElectionManager by using Fabric CA which belongs to his
organization.

3. Creates configuration files for VoteApp, VoteCollector and ElectionManager.

4. Compiles Go binaries (Key application, VoteCollector, ElectionManager server).

5. Creates application Docker images.

6. Initializes VoteApp, VoteCollector and ElectionManager as containers.

8
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Because the set-up is a complex process these operations were automated.
After the system is initialized Election Organizer starts with election configuration 2.2 creation and CCE key

pair generation.
Then Election Organizer proceeds with election management (see Figure 2.1).

(a) ElectionManager landing page (b) Election addition form

(c) Election deletion form (d) Election results publication form

Figure 2.1: Election management demonstration in ElectionManager.

9
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{
"electionID": "president2020",
"electionName": "Presidental Election 2020",
"electionQuestion": "Who will be the next president?",
"startDate": "01.05.2020",
"endDate": "12.05.2020",
"choices": [

{
"id": "1",
"text": "First Candidate"

},
...
{

"id": "8",
"text": "Eight Candidate"

}
],
"publicKey": {

"EncKey": {
"G": "AwrQ506ZtGO3OgyBMnEs9mi+kisZdDYWb3wpKglmU...",
"Q": "AAAAAAAAAAAAAAAAAAAAAAAAAA////f//AGAAX/gX...",
"Y": "AgGM/w01P14/y4O5uwJfMp6x2p6Ia3lzvPm1XOsDT..."

},
"H1": "AhDMVBOKBqUKmvZ5RTwnDIkvl8KQfteNRtWBpmgD8Ibb...",
"H2": "AwVYEWU6UPTb3iZRmry/JHaQFWleJ9cW4aVOmhtdY4Oc..."

},
"rootCA": "-----BEGIN CERTIFICATE-----\nMIIBkzCCmgAwIBA..."

}

Figure 2.2: Election configuration example.

Testing voting phase

For testing, the tester simulated the activities of participants – voters and verifiers – in the voting phase.
Voter interaction with VoteApp to cast a vote:

1. Selects “CAST VOTE” button (Figure 2.3a);

2. Provides her credential;

3. Selects available election (Figure 2.3b);

4. Selects the desired choice (Figure 2.3c);

5. Receives success message of casting process (Figure 2.3d).

10
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(a) VoteApp landing page (b) Election selection step

(c) Choice selection step (d) Cast success message

Figure 2.3: VoteApp casting process demonstration.

Testing bulletin board verification

When voter finishes casting process, her public record can be found published on bulletin board and anyone can
verify that this record is correct. Verifier interaction with VoteApp:

1. Selects “VERIFY VOTE” button (Figure 2.3a);

2. Selects available election (Figure 2.3b);

3. Verifier can now check any public record individually (if there are any) by making different verifications
(Figure 2.4a):

– VERIFY CERTIFICATE – checks that voter certificate was issued from root certificate in election
configuration;

– VERIFY SIGNATURE – verifies that signature on cast ballot is valid;

– VERIFY ZERO ONE PROOFS – verifies that for each candidate there is at most one preference;

– VERIFY SUM PROOF – verifies that the sum of cast preferences is one.

4. Verifier can check election configuration (Figures 2.4b, 2.4c);

11



D1.3 – Use Case Validation

(a) Public record on bulletin board (b) Election configuration part 1

(c) Election configuration part 2

Figure 2.4: Public record and election configuration demonstration in VoteApp.

Testing tallying phase

For testing, the tester simulated the activities of participants in the tallying phase.
Election Organizer gathers all votes from VoteCollector container and performs decryption with additional

opening extraction from aggregated commitments using Key Application 2.6. Then decryption results with
openings are published on bulletin board by interacting with ElectionManager (Figure 2.1a, 2.1d).

12
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Anyone can verify the published election results via VoteApp verification interface (Figure 2.3a, 2.5).

Figure 2.5: Election results published.

Verification is initiated by clicking on ”VERIFY RESULTS” button 2.5. VoteApp aggregates public records
into one vector, additionally, it makes the same checks as shown on Figure 2.4a. When aggregation is finished
commitments are being verified with published openings and results. Verifier is notified if this process succeeded
or failed.

13
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$ ./key --decrypt --id president2020 --keys keys/president2020/ --votes
votes/president2020/↪→

Initiate vote decryption for 'president2020'...
Reading keys...
Aggregating votes...
Number of voters is: 3
Voter '10000000000' latest vote is 'vote˜2020-04-07T08:27:43Z.json'
Voter '10000000001' latest vote is 'vote˜2020-04-07T08:28:29Z.json'
Voter '10000000002' latest vote is 'vote˜2020-04-07T08:30:17Z.json'
Votes are aggregated...
Aggregation took: 41.560649ms
Decrypting ciphertexts and extracting openings...
Decryption and openings extraction took: 170.552309ms
Election results are:
--- Choice ID - 1 got result - 2
...
--- Choice ID - 8 got result - 1
Election results with openings are saved to

'results/president2020-results.json'↪→

Figure 2.6: Key Application decryption process.

2.3.3 Usability

Usability criteria were established in the [PRI20a]. A validation of the pilot implementation with the respect to
the criteria was carried out with following results:

ID Requirement Status Reasoning
UC-1 The process can be cancelled by

the voter any time before the con-
firmation;

Satisfied All steps in the online voting flow have ex-
plicit option to cancel the process without
submitting the vote.

UC-2 The voter is prevented from acci-
dentally voting for an undesired
candidate (by e.g. explicitly se-
lecting / deselecting);

Satisfied Candidate must be explicitly selected or de-
selected.

UC-3 The voter is prevented from over-
voting or undervoting (in case
election has m of n rule and voter
marks only m− 1 choices), at all
times she is informed about how
many options she still has left;

Partially satis-
fied

Current implementation supports 1 of n sce-
nario. Voter can only vote when at least
one selection is made, voter cannot make any
more selections than one.

UC-4 Voter identity and voter choices
are not displayed together on the
same screen to fight against coer-
cion;

Satisfied Voter identity is only visible on the login
page.

14
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UC-5 The ballot presentation (including
candidate order) is aligned with
the requirements of specific elec-
tion;

N/A This requirement does not apply in the pilot
setting, since there are no jurisdictional re-
quirements (references to the legal texts, ad-
ditional confirmations, ordering of the candi-
dates etc.)

UC-6 The information is presented
in unbiased manner, voter has
chance to review all options;

Satisfied Dependent on the number of candidates and
screen size, scrolling may be needed to see
all options.

UC-7 The application follows adap-
tive/responsive design techniques
to support various screen sizes
and orientation;

Satisfied The application has been implemented using
adaptive design techniques, it has tested to be
mobile-friendly 2.7.

UC-8 The application supports
keyboard-only navigation;

Partially satis-
fied

The application supports keyboard-only nav-
igation and all functionality is available with-
out mouse. This is important for the voters
with disabilities. However, the usability val-
idation suggested improvements to the cur-
rent implementation, which we consider suf-
ficient for the pilot.

UC-9 The application is compatible
with assistive technologies;

Partially satis-
fied

The application supports assistive technolo-
gies as tested with screen-readers JAWS and
NVDA. This is important for the voters with
disabilities. However, the usability valida-
tion suggested improvements to the current
implementation, which we consider suffi-
cient for the pilot.
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(a) VoteApp (b) ElectionManager

Figure 2.7: Google Mobile-Friendly Test results.

2.3.4 Performance testing

Performance testing consisted of computation time recordings of different processes inside components. Mea-
sured processes where:

– vote casting (Table 2.6);

– public record verification (Table 2.8);

– votes decryption (Table 2.7);

– election results publication to Ledger (Table 2.9);

– election results verification in VoteApp (Table 2.9).

Table 2.6: Vote casting time pure computation and total time with HTTP requests. All times are provided in
seconds.

Number of choices 2 8 70 1100
Cast message creation - VoteApp 0.87 2.22 17.73 281.52
Cast message process - VoteCollector 0.28 1.58 9.58 147.88
Final message creation - VoteApp 0.53 1.65 13.87 222.73
Final message process - VoteCollector 0.12 0.41 3.57 68.11
Public record addition - Ledger chaincode 0.14 0.45 4.00 64.27
Total casting time 1.94 6.31 48.75 784.51
Total casting time with HTTP requests 3.82 8.44 51.02 799.65
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Table 2.7: Votes tallying time results in Key application (with 5 votes). All times are provided in seconds.

Number of choices 2 8 70 1100
Vote aggregation time 0.11 0.16 1.25 20.77
Decryption with opening extraction 0.39 0.64 5.47 99.5
Total time 0.50 0.80 6.72 120.27

Table 2.8: Vote individual verification in VoteApp. All times are provided in seconds.

Number of choices 2 8 70 1100
Certificate check 0.17 0.10 0.18 0.12
Signature check 0.20 0.13 0.14 0.18
Zero One proof check 0.63 1.28 10.36 157.94
Sum proof check 0.18 0.24 0.91 12.04

Table 2.9: Vote universal verification in VoteApp and Ledger chaincode (5 votes). All times are provided in
seconds.

Number of choices 2 8 70 1100
Public records aggregation
with individual verification (s)

2.78 7.42 52.42 –

Opening verification 0.59 2.18 17.66 –
Total time VoteApp 3.37 9.6 70.08 –
Results verification inside
Ledger chaincode

0.86 2.99 25.11 –

In Table 2.9 there are no time results for election with 1100 candidates. The reason is that the election results
verification takes a lot of time (longer than 300 seconds), which triggers Orderer inside the Ledger to drop the
connection. To resolve that some changes to Ledger network configuration must be done but at the time of
writing and testing the right place where this modification must be done is not found.

Unfortunately with a high number of choices (greater than 8), vote casting takes a lot of time and as we
see from the tables that by increasing the number of choices computation time increases linearly. Therefore
modifications to the system are required to improve the performance.

2.4 Conclusions

Tiviledge provides secure, usable and transparent online voting by using a protocol that makes it possible, in
addition to voter verifiability, to prove to an independent auditor, in a voter privacy preserving manner, that
all accepted votes were stored, sent to the tabulation according to the election rules, and decrypted/tabulated
correctly.

The notion of the data-audit is used to ensure that the published voting result corresponds to encrypted
preferences sent by eligible voters to the digital ballot box and the bulletin board. We mitigate the need to prove
correctness of the software and its operation by demonstrating that according to the public protocol, the correct
election outcome was calculated based on the given public inputs. Moreover, we emphasize the importance of
long-term voter privacy over the long-term integrity of the election result.

The underlying cryptographic protocol is based on verifiable homomorphic aggregation of rerandomized en-
crypted votes created with a commitment-consistent encryption (CCE) scheme. The protocol allows to publish
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rerandomized commitments to the public ledger, providing third-party auditability and receipt-freeness. Uncon-
ditionally hiding commitment scheme is used.

We have validated the Tiviledge from the perspective of requirements, protocol and implementation and we
consider that it fulfills the validation criteria. However, we must note that current Tiviledge implementation is
a research prototype, its intended use is experimentation with the technology, not organizing an actual legally
binding online voting event. There are following major areas of interest, important for any production-grade
online voting system, that haven’t received thorough attention in the development of Tiviledge prototype:

– Compatibility with legal requirements of any particular jurisdiction—the Tiviledge prototype implements
1-of-N ballot structure as a proof-of-concept, but is generalizable to M-of-N ballot-style, supports revoting
and multi-channel elections. However, dedicated gap analysis is required in any instance of potential
application.

– Voter eligibility verification—the Tiviledge prototype implements a simple credentialing scheme, where
voters authenticate and sign messages using one-time credentials that are stretched into ECDSA private
keys. In practice the procedure and technology of eligibility verification is important cornerstone of elec-
tion security to avoid e.g. ballot-box stuffing or breach of voter privacy and the simplistic PKI of Tiviledge
is not applicable.

– Election private key protection—while implementing the Tiviledge prototype we’ve considered the elec-
tion private key protection largely a solved problem, not requiring special attention in this project. Thresh-
old decryption (with different dealer setups) and hardware security modules are the topics of interest here,
since the file-based private keys with no access control, that we use in Tiviledge are not suitable for real
elections.

– Voter verification—the Tiviledge prototype does not come with a verification application for cast-as-
intended property, whereas both Benaloh-challenge and Estonian-style verification would be possible here.

We also note that the complexity of the system depends on the number of candidates and this makes Tiviledge
and homomorphic aggregation suitable in contexts where there are less candidates.
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Chapter 3

Validation Results—Use Case 2: Distributed
Ledger for Health Insurance

The requirements of this use case have been described in project deliverables [PRI18, PRI20b]. The main deliv-
erable of the project for this use case is a prototype implementation of the system. As explained in [PRI20a], the
prototype was used to evaluate the functionality, security, and performance properties of the underlying protocol.

We model updates to patient data as a stream of events where each event is represented by a tuple of unsigned
integers. The first value of each such tuple is the patient identifier, the second one the identifier of the event type
and the remaining ones are parameter values whose meaning depends on the event type.

The prototype is built as an application on top of MPyC, a secure multi-party computation framework for the
honest majority setting.1 The prototpye uses a private development snapshot of MPyC implementing the circuit
satisfiability protocol of [AC20], which reconciles Bulletproofs with Sigma Protocol theory. Currently, only the
classical addition and multiplication gates are supported by the verifiable computation framework. In particular,
comparison gates are a work in progress not yet available to be used in our prototype.

To implement comparisons using the available gates, we need to pass the input data into the circuit as bit
vectors instead of atomic integers, which causes a significant expansion of the circuit size. To control the expan-
sion, we limit the patient identifiers to 20 bits (allowing for up to 1 048 576 patients), the event types to 10 bits
(allowing for up to 1 024 distinct types) and the remaining attributes to three fields of 8 bits each (allowing for
256× 256× 256 combinations).

3.1 Functional validation

As the functional requirements describe the ability of various types of users to perform certain operations, unit
testing and integration testing were used to validate that the functional requirements have been met. To reduce
the risk of exposure of confidential data of actual patients, both unit and integration testing were performed on
synthetic data.

Requirement Results
It must be possible to compute a commitment for a
set of events.

We are using Pedersen vector commitments to represent the
sets of events.

It must be possible to compute a union commit-
ment representing the union of two sets of events.

With Pedersen commitments, the commitment of a union of
disjoint sets is the product of the commitments of the input
sets, and is thus trivial to compute and verify.

1https://github.com/lschoe/mpyc
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It must be possible to compute a subset commit-
ment representing a subset of events (specified by
the condition of having the value of the given at-
tribute in the given range).

We compute the required subset on plaintext data, but in paral-
lel execute a verifiable computation to derive the commitment
for the subset, including in the set commitment only the com-
mitments of the elements that match the filter condition.

It must be possible to compute simple aggregates
(count of elements, sum of values of a given at-
tribute) over the sets under the commitments.

We run the counting or summing process as a verifiable com-
putation and open the commitment of the count or sum value
as the last step of the protocol.

3.2 Security validation

As the security requirements describe the inability of adversarial parties to perform certain operations, these
cannot be validated by testing or benchmarking. Instead, the security of the underlying cryptographic primitives
and protocols was analysed theoretically.

In principle, correctness of the implementation could also be formally verified, but this is not realistic given
the size of the system and the ability of current formal analysis tools. Instead, code reviews and static analysis
tools should be used to validate the implementation of the protocols in a production implementation. As the
prototype was only used to prove the concept, the robustness requirements are much lower and thus only code
reviews were employed in the scope of this project.

Requirement Results
It must be infeasible to change the data under a
commitment without breaking the link to the com-
mitment.

Pedersen commitments used in the prototype are known to be
computationally binding under the discrete logarithm assump-
tion. This means they are vulnerable to quantum attacks and
must be replaced with a post-quantum resistant solution when
large-scale quantum computers become realistic. Note that
this affects only the proof value of the commitments.

It must be infeasible to recover the underlying data
from a commitment.

Pedersen commitments are known to be unconditionally hid-
ing. This means they are not vulnerable to any advances in
computing technology (including quantum attacks). Thus, the
commitments posted today can not be used to attack the pri-
vacy of patient data in the future.

When computing a union commitment, it must be
possible to get a proof that the new commitment
represents the union of the sets of events repre-
sented by the inputs.

With Pedersen commitments, the commitment of a union of
disjoint sets is the product of the commitments of the com-
mitments of the input sets, and is thus trivial to compute and
verify.

The proof of correctness of the union commitment
must not leak the details of the underlying events.

The proof in this case is based only on the commitments them-
selves and thus can not leak any additional information.

When computing a subset commitment, it must be
possible to get a proof that the new commitment
represents exactly the subset of the set of events
matching the given filtering condition.

The verifiable computation protocol is based on [AC20],
which is computationally knowledge sound under the discrete
logarithm assumption.

The proof of correctness of the subset commitment
must not leak the details of the underlying events.

The verifiable computation protocol used is based on [AC20],
which is perfectly special honest-verifier zero-knowledge.

When computing an aggregate of a subset under a
commitment, it must be possible to get a proof that
the aggregate was computed correctly.

The verifiable computation protocol is based on [AC20],
which is computationally knowledge sound under the discrete
logarithm assumption.

The proof of correctness of the aggregate must not
leak the details of the underlying events.

The verifiable computation protocol used is based on [AC20],
which is perfectly special honest-verifier zero-knowledge.
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It must be infeasible to recover the input data from
the shares used in the multi-party computation.

The multi-party computation uses Shamir secret sharing
which is known to be unconditionally hiding unless major-
ity of the parties collude. Thus, the shares exchanged by any
minority subset of the parties today can not be used to attack
the privacy of patient data in the future.

3.3 Performance validation

The performance of the proposed protocols was first analysed theoretically, in the asymptotic complexity model.
The results were then validated based on benchmarking on a representative set of test data. The experiments
were performed using a single core of a 1.8 GHz Intel Core i7 CPU, running the Cygwin64 port of CPython 3.8
on top of Windows 10 Pro. For the multi-party computations, all parties were executed as threads within the
same process. In all experiments, the performance was CPU-bound.

Metric Target Results
Cost of computing a
set commitment, cost
of computing a union
commitment and its
proof

A busy regional hospital can generate tens
of thousands of events in a day. As medical
records are long-lived, the cumulative event
counts are expected to reach hundreds of mil-
lions. Computing and posting of the commit-
ments is a background process, so a compu-
tation time in minutes is entirely acceptable,
and even tens of minutes is still tolerable.

Computing the commitments can be done
in about 5 ms of CPU time per event, or
in about 50 seconds for a batch of 10 000
events. The cost of merging the previous cu-
mulative commitment and the commitment
of a new daily batch is negligible. Overall,
the performance is well on target.

Cost of verifying a set
commitment, cost of
verifying a union
commitment

Verification of a set commitment is routinely
done only when the records of one patient are
extracted and their integrity verified. This is
an on-demand activity and should run in a
few seconds preferably, or a few tens of sec-
onds at most.

The cost of verifying a commitment on a set
of events is the same as computing the com-
mitment. With one patients’ records not ex-
pected to run into tens of thousands of events,
the performance is on target.

Exceptionally, the integrity of updates over
some time period may have to be verified for
auditing. This is a pre-planned activity, so
computation time in tens of minutes is ac-
ceptable.

The cost of verifying a commitment on a set
of events or a union commitment is the same
as computing those commitments, so tens of
thousands of events can be verified in min-
utes and thus the performance is on target.

Cost of computing a
subset commitment
and its proof.

Extraction of records of one patient is an on-
demand activity and should run in a few sec-
onds preferably, or a few tens of seconds at
most.

In the current model, proving the commit-
ment of a subset is linear in the size of the su-
perset from which the subset is extracted. In
the best results so far, the process took about
3 seconds of CPU time per event in the input
set for equality comparisons on patient iden-
tifiers and about 8 seconds for equality com-
parison on event type followed by a range
comparison on an attribute value, which is
not yet practical for using on general patient
populations.
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Cost of verifying a
subset commitment.

Verification of records of a patient delivered
to either the patient or to a specialist the pa-
tient was referred to should ideally run in a
few seconds. If that is not feasible, a fallback
solution of displaying the records themselves
immediately and having the verification run
in the background in a few tens of seconds,
or perhaps even in a few minutes, would also
be tolerable.

Computing the commitment of a subset for
verification runs in time linear to the size
of the subset, and verifying the proof of the
computation of the commitment runs in time
linear to the size of the proof, which itself
is logarithmic in the size of the input set.
For realistic data sizes, the verification cost
is several orders of magnitude lower than the
proving cost, and thus on target.

Cost of computing a
count or a sum and its
proof.

Reporting is a pre-planned activity expected
to run on a monthly or even quarterly sched-
ule, so for extraction of larger subsets of
records and computing aggregates over them,
computation time in tens of minutes per re-
port is acceptable. However, generating a
single report will typically involve multiple
steps of filtering various subsets of events,
joining different subsets, and computing ag-
gregates on those subsets. Therefore, each
single step should run in a few minutes.

In the current model, computing and prov-
ing a count or a sum is linear in the size of
the input set and in the best results so far, the
process took about 0.35 seconds of CPU time
per event in the input set, which is much less
than for the subset computations. Since any
report will start from filtering the full data
set, the aggregation performance is currently
not a limiting factor for feasible dataset sizes.

Cost of verifying a
count or a sum.

Also report verification is a pre-planned ac-
tivity expected to run on a monthly or quar-
terly schedule, so performance expectations
are roughly the same as for report generation.

Verifying the proof of the computation of a
count or a sum runs in time linear to the size
of the proof, which itself is logarithmic in the
size of the input set. For any data sets where
constructing the proof is realistic, the verifi-
cation cost, which is several orders of magni-
tude lower than the proving cost, is on target.

3.4 Conclusions

Aside from the constraints imposed by the underlying cryptographic protocols, the verifiable MPC extensions of
the MPyC framework currently have two technical limitations: (a) the cost of constructing the proofs is super-
linear in the size of the circuit specifying the computation; and (b) it only implements the classical addition
and multiplication gates, but lacks support for comparison gates. A subsequent iteration of the verifiable MPC
extensions is expected to remove these limitations and speed up the execution of verifiable computations by a
few orders of magnitude.

When the planned improvements to the verifiable MPC toolkit arrive, the computations should become fea-
sible for smaller specialized subsets, such as cancer patients or transplant recipients. As the treatments in those
segments are generally very costly and also quite experimental, it may well be the case that the technology will
indeed be practically useful there even when it’s not yet ready for the more general applications.
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Validation Results—Use Case 3: University
Diploma Record Ledger

Use Case 3 implements a system for privacy-preserving diplomas (or more generally, credentials) validation.
Three actors are involved:

– The ISSUER is the entity (typically, university) that awards degrees.

– The HOLDER is the entity (typically, a university alumnus or alumna) that is awarded the degree.

– The VERIFIER is the entity to which the HOLDER wants to provide proof of a degree awarded by the
ISSUER.

The three actors interact following the DIPLOMATA protocol described in [PRI20b]. The DIPLOMATA proto-
col has been implemented in the e-diplomata system, whose validation, following [PRI20a], we describe below.

4.1 Functional Validation

The following table provides a listing of the various actions performed by the involved parties at the application
layer of the service.

Actor Action Component
ISSUER Login Authentication Service
ISSUER List Diplomas Issuer Service
ISSUER Filter Diploma Issuer Service
ISSUER View Diploma Issuer Service
ISSUER Award Diploma Issuer Service & Public Ledger
ISSUER View Award Status Public Ledger
HOLDER Publish Request for Award Proof Issuer Service & Public Ledger
HOLDER View Publication Request Status Public Ledger
ISSUER List Publication Requests Issuer Service & Public Ledger
ISSUER Publish Proof for Publication Request Issuer Service & Public Ledger
ISSUER View Proof Publication Status Issuer Service & Public Ledger
VERIFIER Publish ACK/NACK/FAIL for Publication Proof Verifier Service & Public Ledger
VERIFIER List Verified/Rejected Publication Proofs Verifier Service & Public Ledger

The sequence of the above actions is depicted in the following diagram.
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Functional validation

4.2 Non-functional Validation

Cryptographic Security

Without making any particular assumptions about the ledger in use, the security of the DIPLOMATA protocol
relies on the properties of an El-Gamal cryptosystem for generating signatures and commitments (Basic Crypto
Layer) along with a symmetric encryption mechanism for interparty message communication (Transaction Logic
Layer). In particular, the usual hybrid approach has been adopted, where the security features of an asymmetric
cryptosystem (non-repudiation, zero-knowledge primitives, etc.) are combined with the advantages of symmetric
cryptography (low cost of encryption). Both layers are built on top of appropriately chosen elliptic curves.

(a) Transaction Layer: At the transaction layer, involved parties have the ability to potentially create common
secrets for the purpose of exchanging sensitive information. For example, the ISSUER symmetrically
encrypts part of the produced proof addressed to a VERIFIER (in particular: the proof of decryption along
with the accompanying decryptor), so that no man-in-the-middle who eavesdrops the transaction layer
and captures the proof-packet is able to verify it and publish an acknowledge. The symmetric encryption
infrastructure makes calls to the NaCl public-key API, meaning that each involved party must own a
key over the Curve25519 elliptic curve (128 bits of security/256 bits keys size) used for common secret
agreement.
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(b) Basic Crypto Layer: At this layer, the main interest is to

(i) generate and verify zero-knowledge proofs; in particular, DDH proofs on behalf of the ISSUER along
with Chaum-Pedersen proofs of reencryption are crucial for traceability of computations to knowl-
edge of secret parameters and cross-checking integrity of documents.

(ii) sign computations and verify these signatures; in particular, verifying the signatures which enter
the ledger guarantees coherence and soundness (e.g., that a HOLDER cannot request a proof for an
award they don’t own, or that an ISSUER cannot create a proof without prior request on behalf of a
HOLDER).

The security of these operations depends on the hardness of the Discrete Logarithm Problem for certain
elliptic curves. The currently suggested minimum key size is 384 bits, meaning that each involved party
must own an El-Gamal key over the P-384 elliptic curve (192 bits of security). The adopted scheme for
digital signatures is the ECDSA standard. In order to reduce the number of protocol steps and relax depen-
dence on communication failures, the usual approach of making zero-knowledge proofs non-interactive
was followed. This is attained by means of the Fiat-Shamir heuristic, which requires a secure hash func-
tion to be fixed and used by all parties. The bit length of the digest output should be at least equal to that
of the order of the curve in use, so SHA384 has been chosen.

Performance Metrics

In order to examine the system’s behaviour with respect to the ledger, the time needed to publish ledger entries
was recorded. The following diagram shows the results of ten data publications to the distributed ledger. The
ledger used for the tests was Ethereum Ropsten blockchain, but any other distributed ledger could be used as
well. The vertical axis shows the time needed to confirm that data were published to the ledger and the orange
line shows the linear regression derived from the recorded data. Based on the recorded values, the average time
for the system to publish the data to the ledger is 23892.1 ms. Following that, the transaction block in which
the data were published must be confirmed. For the Ethereum Blockchain, we can assume that his happens after
the publication of 10 blocks. Consequently, the average time needed to confirm data publication to the ledger is
roughly estimated to be 24 + 10× 24 sec.
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4.3 Usability Validation

In the following section we sum up the results of several User Interface (UI, UX) evaluations that took place
during the e-diplomata service prototype design and implementation. Considering the early stage of the service,
most of the evaluations were based on the cost effective method Heuristic Evaluation (HE) with a view to be able
to continuously re-inspect the system usability after each iteration of the development process. Each evaluation
resulted in a set of UX improvements. Each one, was categorized, based on the predefined set of usability
heuristic(s), and then fed to the subsequent development iteration. In this context, heuristics refer to general
guidelines for user interface design, such as Jacob Nielsen’s ten general principles [NM94]. For more details on
Heuristic Evaluation see Section 2.4.3 of [PRI20a].

4.3.1 User Interface

Major focus to identify usability issues was given to the Single Page Application components that deliver the
user interfaces of the service.

Design Toolkit

As is the case in modern UI development, a preliminary research regarding the use of an existing web based
UI toolkit was conducted. A UI toolkit provides an assortment set of ready-to-use UI resources, providing
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developers a way to efficiently build usable and accessible interfaces.
The e-diplomata prototype was based on digigov-sdk, an open-source toolkit that was built in the context of

the digital transformation act of the Greek government. The tool consists of a Design System that was highly
inspired by the corresponding project of gov.uk, and a prototype implementation of the system components and
patterns using the react.js library. We additionally consider that e-diplomata user personas requirements closely
match those targeted by the toolkit as it was designed with particular regard to meeting usability and accessibility
standards for use in e-government services.

e-diplomata Patterns

The implementation of the design system of digigov-sdk is inspired from the Atomic Design methodology which
indicates a set of rules regarding the classification of the system components. This allowed us to use existing
basic (atom) components and a set of existing patterns (organisms) to build up majority of the e-diplomata views.

In the following sections we point out the set of usability heuristics that validate the overall design of the
application. We additionally point out heuristics validation for a set of core patterns reused across application
views.

Cross Application Heuristics

Match between system and the real world

– Express ledger concepts into basic wordings that stem from the domain model of e-diplomata. Pre-
vent oversimplifying concepts, use multi-level state wordings when applicable.

State:
qualification award action pending for ledger transaction confirmation
could be mapped to
award pending / publishing

– Prevent hiding actions that are not yet available but are still to be executed at a later stage of the
protocol. Use disabled styles instead.

– Hide resource actions that are no longer apt to be executed at a later stage of the protocol.

Consistency and standards

– Common 2/3 layout across views.

– Comply with the AA level Web Content Accessibility Guidelines (WCAG) success criteria.

– Responsive design for enhanced mobile UX.

Recognition rather than recall

– Common 2/3 layout across views.

– Comply with the AA level WCAG success criteria.

– Responsive design for enhanced mobile UX.

Recognition rather than recall

– Reuse of existing patterns when possible to mitigate user cognitive overload (resource listing, item
details).

Aesthetic and minimalist design

– Minimalist layout design.
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– Prevent excessive use of animations.

– Prefer use of comprehensive labels over icons/images.

User control and freedom

– Provide a link to the service index view from the header layout section.

Pattern 1. Start page / Layout

Aesthetic and minimalist design

– Prominent CTA (Call to Action) styles and positioning.

Help and documentation

– Primary service description.

– Secondary text to communicate next step eligibility details.

– Sidebar links to service documentation.
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Pattern 2. Resource List

Visibility of system status

– Entry title and details.

– Styled status indicator for each item.

– Set of actions based on item status.

Recognition rather than recall

– Always map primary action to navigate to item details view.

– Use at most one available secondary action.

– Display non-applicable secondary actions using disabled styles.

– Separate styles for primary/secondary action.

Aesthetic and minimalist design

– Cut down item details to 1–2 rows. Additional details will be provided in item details view.

Error prevention

– No irreversible resource action should be available in list view.

– Display a confirmation prompt for actions that alter the state of the resource.
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Pattern 3. Resource Details / Actions

Visibility of system status

– Item title and detailed description.

– Primary item status.

– Additional status content if applicable, to map asynchronous ledger state.

– Set of actions based on item status.

User control and freedom

– Warn users regarding the irreversible result of actions that trigger ledger transactions.

Error prevention

– Detailed main action description.

– Display a confirmation prompt for actions that alter the state of the resource.

Flexibility and efficiency of use

– Elements that indicate the extended status of the resource may link to the public ledger system (e.g.,
https://etherscan.io/txid).

4.4 Interoperability Validation

Interoperability validation refers to the assessment of the ability of the server to integrate data from pre-existing
sources. The objective is to ensure that the e-diplomata implementation can interoperate with existing university
infrastructure which for our case is the GUnet server.

The interoperability part of the implementation consists of:

Authorization: An authorization token for communication with the GUnet server is stored for each issuer. The
token is used to be able to ask the GUnet server for the issued diplomas and their respective title details.

30

https://etherscan.io/txid


D1.3 – Use Case Validation

Diplomas endpoint: Using the token a GET request to the provided GUnet diplomas endpoint (http://
toast.noc.uoa.gr:7770/diplomas?maintainerCode=uoa) is made.
The response contains information about the student, the degree and degree date for the issued title and a
reference to the title id for the referred diploma.

Titles endpoint: Using the token a GET request to the provided GUnet titles endpoint (http://toast.
noc.uoa.gr:7770/title?maintainerCode=uoa&titleid=2) is made.
The response contains information about the title which includes the institution name and diploma title
details.

Award functionality: For the award functionality the diploma information is duplicated on the diplomata issuer
server storage component and is enchanced with crypto and ledger information.

4.5 Implementation Validation

Implementation validation refers to the assessment of the correctness of the code implementing the use case.
The objective is to ensure the integrity and robustness of the service, and make sure that the implementation is
successful and error-free.

In its current state, the project consists of approximately 5000 lines of code. It requires 2 physical CPU cores,
4GB of RAM and 20GB of disk space. With a standard Intel i7-7500U 2.70GHz processor, the average time
needed to build the application is about 2 min and 20 sec.

Every project must describe a Continuous Integration pipeline, in order to ensure the quality of the project.
The project has the following main jobs:

Test: All microservices must run and pass tests on all cases. Tests are the building block of the application, and
they make sure that the application meets the needs of the users. Tests need to cover both business logic
and unit tests.

Unit testing: the purpose of unit testing is to test the correctness of isolated code, such as methods, func-
tions etc. It’s done during the development of an application by the developers. A unit may be an
individual function, method, procedure, module, or object.

Functional testing: functional tests ensure that the application works as expected from the user’s per-
spective. Assertions primarily test the user interface.
Both unit and functional testing are implemented via Jest; a JavaScript testing framework designed
to ensure correctness of any JavaScript codebase.

Test coverage: a measure used to describe the degree to which the source code of a program is executed
when a particular test suite runs. A program with high test coverage, measured as a percentage,
has had more of its source code executed during testing, which suggests it has a lower chance of
containing undetected software bugs compared to a program with low test coverage.

Lint: Since a project requires both active development and maintenance, the Lint job needs to ensure that the
application stays aligned with the linting configurations used throughout the project, both for backend and
frontend.
Linting is the automated checking of your source code for programmatic and stylistic errors. This is done
by using a lint tool (otherwise known as linter). A lint tool is a basic static code analyzer.

Build: The build job generates artifacts, which are actually docker images, generated by the production grade
Dockerfiles. These images need to be deployed in GRNET’s docker registry, with the relevant docker tags.
All projects need to follow and maintain the build job (which is maintained by the GRNET team).
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4.6 Deployment Validation

Deployment validation refers to the assessment of the mechanisms for effecting the transition from code to the
deployment of a working system via Continuous Integration / Continuous Deployment approaches. Every
project needs to have a pipeline in order to validate the quality, the readiness and the deployability of the project.
There are specific rules that need to be met in order for the application to be deployed in an environment. The
Continuous Integration and Continuous Deployment can be split into two main categories:

– Application specific jobs: the project defines its own jobs to ensure the quality of the project

– Deployment specific jobs: jobs that are required for a project to get deployed

In order for a project to get deployed in a specific environment (e.g., production, testing etc.), there are (at
least) 2 required jobs:

– Build: Compiling the application (source code, libraries, configuration files, etc.) and producing shippable
executable (could be of any extension such as .jar, .exe)

– Deploy: promoting the output from the Build phase in the intended environment, for instance, from De-
velopment to Testing environment.

Docker: Docker is a tool that allows developers to create, deploy, and run applications in containers. Container-
ization is the use of Linux containers to deploy applications. A container runs natively on Linux and shares
the kernel of the host machine with other containers. It runs as a discrete process, taking no more memory
than any other executable meaning it is very lightweight.
The application is divided into microservices, and each service has its own Dockerfile, so they can be
launched and orchestrated from docker-compose.yml file. Access to resources (like networking interfaces
and disk drives) are virtualized inside this environment, which is isolated from the rest of the system.

Kubernetes: The infrastructure of the service runs on a Kubernetes platform. The service is composed of several
images, which run on the Kubernetes cluster, along with a set of configuration files which define how the
service runs.
On Kubernetes, we have 2 clusters: demo and production. All the resources of the service are defined
and handled via its API. So every component of the project is defined and sent to the API, in order to get
deployed on Kubernetes.

4.7 Conclusions

The validation of the e-diplomata service spans a variety of different domains, both functional and non-functional.
From the results of the evaluation, given above, we can draw a number of conclusions:

– The concrete implementation of a cryptographic protocol requires considerable engineering work, above
and beyond any theoretical analyses of the protocol. Even the identification and selection of cryptographic
libraries and parameters is a non-trivial task.

– For a service that is intended to have a wide audience, UI design is an important factor and calls for
additional skills and technologies in addition to cryptography and security.

– In order for a diploma verification service, such as e-diplomata, to work in the real world, it must be
connected to the institutions that award the actual diplomas. We have shown how this can happen in
Greece, through the API offered by GUnet. However, actual adoption of a system like e-diplomata requires
a buy-in from different institutions as well as cross-border interoperability. We are therefore currently
following the Diplomas Use Case developed in the European Blockchain Services Infrastructures (EBSI).

32



Chapter 5

Validation Results—Use Case 4: Cardano
Update System

This chapter describes how we validated the implementation of the update mechanism for decentralized software
updates described in [PRI20d], which is summarized in [CKKZ20].

We designed a custom framework for validating the implementation of the update mechanism. Section 5.1
introduces this framework, which is based heavily in the property-testing [CH00] ideas.

After introducing our property testing framework, Section 5.2 presents an explanation on how we validated
the requirements for the update mechanism, which are described in [PRI20a].

Finally, Section 5.3 presents the results of the property tests, in which we detail several important bugs that
we could catch thanks to our high assurance testing approach.

5.1 Property testing approach

In this section we explain the trace-based property-testing approach we took to validate some of the requirements
that are part of the validation criteria defined in [PRI20a, PRI20d].

The update protocol described in [PRI20d,CKKZ20] was integrated to Cardano. The architecture of Cardano
can be roughly split into three layers:

– Network, which is responsible for data transmission among the Cardano nodes.

– Consensus, which runs the Cardano’s consensus algorithm. It sends and receives data from the network
layer, and uses the ledger layer to validate and process transactions.

– Ledger, which processes the transactions that are part of blocks.

In particular, the ledger layer is responsible for processing the update payload, and therefore this is the layer that
implements the update logic proposed in [PRI20d, CKKZ20].

The ledger layer consists of a set of pure functions that transform the ledger state. That is, given an initial
state and some “payload”, these functions return either an error if the payload could not be applied, or the state
that results from applying the payload to that initial state. In Haskell such functions have type:

:: ( ... ) ⇒ st → d → Either err st

where ( ... ) are constraints on the state st and payload data d (i.e. which information they need to provide
or which operations they should support).

The payload passed to the ledger functions could be data such as:
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– UTxO transactions, which specify which inputs to spend, how much to spend, fees to pay for the trans-
action, to which address the output should be assigned to, etc. In this case, the ledger function in charge
of processing this payload will return an error under certain conditions such as inputs not having enough
funds to cover the outputs, the fees being insufficient, the signatures not verifying, etc.

– Stake pool registration transactions, which are used to register and de-register stake pools.

– Update transactions, which are transactions that contain update information such as proposals (system
improvement proposals (SIP) or implementations) commits or reveals, proposals votes, etc.

In addition to the state transforming functions discussed above, the ledger layer exposes a query API, which
allows users to ask information about the ledger state, without having to know its internal structure (and thereby
breaking encapsulation). In the case of the update protocol, we implemented an API in the ledger to query
different kinds of information about the update proposals (SIP or implementation). For instance:

– Is the proposal known in the ledger state?

– Is the proposal stably submitted? (which means that the proposal was submitted long enough ago that is
now permanent on the blockchain)

– Is the proposal approved or rejected?

– Is the proposal scheduled for activation?

– Is the activation of the proposal canceled?

When validating the implementation we must test not only the state transforming part of the ledger’s API but
also the query API. This brings us to the question of how can we test the update API that is part of the ledger?

The blocks stored in the Cardano chain consist only of transactions that were validated by the ledger. These
transactions must have been validated by the ledger (API functions). Therefore, one could characterize all
possible evolutions of the blockchain by describing sequences of ledger state transformations together with the
payload that caused this transformation. We call such evolution a trace.

A trace consists of an initial state, followed by a sequences of actions and ensuing state. In this context, an
action represents either:

– the payload that is applied to the ledger state, e.g. UTxO transactions, update transactions,

– some external event that causes changes to the ledger state, e.g. the blockchain “clock” ticks or the stake
distribution changes. Note that the classification of an event as “external” depends on the ledger component
we are focusing on. For instance, the change in stake distribution is an event that is internal to the ledger
component that maintains this information, but it is external to a component like the update mechanism.

Below we give a very simplified example of an update trace, which is represented as a Haskell data-structure:

Trace
{ intialState: State { slot: 0, commits: [], reveals: []}
, transitions:

[ (Tick, State { slot: 1, commits: [], reveals: []})
, (Tick, State { slot: 2, commits: [], reveals: []})
, (Submit A, State { slot: 2, commits: [A], reveals: []})
, (Tick, State { slot: 3, commits: [A], reveals: []})
, (Reveal A, State { slot: 3, commits: [A], reveals: [A]})
]

}
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In this trace we start with a state in which the initial slot is 0. The trace has 4 transitions, represented as a list.
In Haskell lists are delimited by square brackets, and [] denotes the empty list. The transitions describe an
evolution where the clock ticks twice, then a proposal A is submitted which results in a state that has A in its list
of commits. After one more tick and the revelation of A we end up in the state that is in slot 3, and has A as the
only commit and revelation.

Besides traces, we also define the notion of a trace fragment (encoded by the TraceFragment type in our
tests). A trace fragment is a sub-sequence of the transitions in a trace, where only sub-sequences of contiguous
elements are considered. So in the example above, the following transitions constitute a trace fragment:

[ (Submit A, State { slot: 2, commits: [A], reveals: []})
, (Tick, State { slot: 3, commits: [A], reveals: []})
]

but the following transition do not, as the elements do not appear contiguously in the original trace:

[ (Tick, State { slot: 1, commits: [], reveals: []})
, (Submit A, State { slot: 2, commits: [A], reveals: []})
, (Reveal A, State { slot: 3, commits: [A], reveals: [A]})
]

We make use of QuickCheck [CH00] to define the generators of traces for the update mechanism. To
generate traces, we first have to define generators for random update actions. Update actions consist of update
payload and events external to the update system such as changes in the stake distribution. Given a randomly
generated initial state and sequence of actions, we can elaborate a trace by feeding this initial state and first action
in the sequence to the ledger’s update API. This results in either an error, if the generated action is invalid, or a
next state otherwise. Using either the initial state if the action is invalid or the next state if the action is valid, we
can repeat this procedure until all the actions in the sequence are used.

The generation of invalid actions is fundamental to our testing approach since this allows us to test that the
system does not reject valid inputs. One can imagine that it would be easy to write a very safe ledger by rejecting
all transactions. By generating invalid actions, we can check in our tests that these invalid actions (as reported by
the ledger) are indeed invalid according to our expectations. The other advantage of generating invalid actions is
that we test the system also with invalid input. For instance, if we would only generate SIP revelations only after
the corresponding SIP was stably submitted, we would not be able to detect errors in which the system wrongly
accepts the revelation of an unstable commit.

In our testing framework, the actions of the trace are tagged according to their validity. Using our example
above, we show an example of such tagged trace:

Trace
{ intialState: State { slot: 0, commits: [], reveals: []}
, transitions:

[ Valid (Tick, State { slot: 1, commits: [], reveals: []})
, Valid (Tick, State { slot: 2, commits: [], reveals: []})
, Invalid (Reveal A)
, Valid (Submit A, State { slot: 2, commits: [A], reveals: []})
, Valid (Tick, State { slot: 3, commits: [A], reveals: []})
, Valid (Reveal A, State { slot: 3, commits: [A], reveals: [A]})
]

}

In the preceding example, we can see that the first revelation of proposal A is marked as invalid, since there is no
corresponding stably submitted commit.

For more details on the implementation of our update-system trace generation, we invite the interested reader
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to look at the code which is available in the project’s repository [NAK21].
So far we have seen what traces are and briefly explained how generate them. Since all possible evolutions of

the Cardano blockchain have to correspond to a trace of the ledger, we can express safety properties of the ledger
layer by defining properties on traces. Let’s now turn our attention to the properties we would like to express.

There are three main aspects of the update system we can model using the notion of traces:

1. the states an update can be in. For instance, the SIP is committed, the SIP was approved, an implementation
of the SIP was rejected, etc.

2. the possible transitions between those states (i.e. a state machine specification of the update protocol). For
instance, an implementation can be revealed only if its corresponding commit is submitted.

3. the assertions about the conditions under which an update can change from one state to the another. For
instance, the SIP corresponding to a given update should enter the “approved” state only if we can find
a previous tally event in which there is a sufficient amount of votes for that proposal. In this assertions
we can also test the query API of the ledger by contrasting the query results against what we observe in
the trace. For instance, if the query API reports an SIP as revealed, then we should be able to find the
revelation payload in one of the actions of the trace.

During the implementation of the property tests, we found out that these properties are easier to test if we
uniquely identify the updates in the system. Furthermore, for a given update, we would like to associate the SIP
and implementation proposal that allows that update to take place 1. Therefore, we introduced in our property-
testing framework the concept of update specifications. An update specification allows to uniquely identify
updates in the system, and is a concept that exist only in our testing code. An update specification contains:

– an unique identifier,

– the SIP commit,

– the SIP revelation,

– the implementation commit, and

– the implementation revelation.

The above is coded in our implementation by the following data type:

data UpdateSpec =
UpdateSpec
{ getUpdateSpecId :: SpecId
, getSIPSubmission :: Submission MockSIP
, getSIPRevelation :: Revelation MockSIP
, getImplSubmission :: Submission MockImpl
, getImplRevelation :: Revelation MockImpl
}

where SpecId is simply the set of unsigned integers, Submission MockSIP is the set of (mock) SIP submis-
sions, Revelation MockSIP is the set of SIP revelations, and Submission MockImpl and Revelation

MockImpl are the sets of implementations submissions and revelations.
To be able to test the aforementioned three types of properties, we need to extract the parts of a trace that are

relevant to a given update specification. To this end we “de-multiplex” traces into a sequence of events per-update
specification. Let’s take a look next at what these events are.

1There can be multiple implementations of an SIP, but we treat them as separate updates, and of course, only one of such update will
be successful.
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According to the update protocol proposed in [PRI20d,CKKZ20], which we implemented, a software update
undergoes several state changes: for instance the SIP of a software update might get approved, the implementa-
tion of an update might get rejected, the update might get activated on the main chain. An update event represents
the change in the state of an update proposal. If a proposal changed from state s to state t, the update event cor-
responding to this transition is the target state t, together with the trace fragment during which the update is in
that state. This is encoded in Haskell as follows:

data UpdateEvent
= E { eventState :: UpdateState

, eventFragment :: TraceFragment UpdateSUT
}

In addition to the events that are associated to state transitions, for each trace we can define an “initial event”,
consisting of the initial state of the update in that trace together with the trace fragment during which the update
is in that state.

We have talked about update states, but what are the states (UpdateState) a proposal might be in? We have
identified the following:

1. The update proposal is unknown to the system (referred to as Unknown in the implementation), and in
particular denotes the fact that no SIP corresponding to this update proposal was submitted.

2. The SIP commit for the update proposal was submitted (SIP Submitted).

3. The SIP commit for the update proposal is stable on the chain (SIP StablySubmitted).

4. The SIP is revealed (SIP Revealed).

5. The SIP is stably revealed on the chain (SIP StablyRevealed).

6. The SIP is rejected (SIP (Is Rejected)), which means that the SIP gathered enough votes against it.

7. The SIP has no quorum (SIP (Is WithNoQuorum)), which means that the SIP gathered enough absten-
tions to go into the next voting round.

8. The SIP is expired (SIP (Is Expired)), which means that there was no decision (for or against) reached
after all the voting rounds are over.

9. The SIP is approved (SIP (Is Approved)), which means that the SIP gathered enough “for” votes.

10. The SIP has no verdict (SIP (Is Undecided)), which means that the are still voting periods that need
to be completed, and we are awaiting for votes and a verdict.

11. The implementation commit for the update proposal was submitted (Implementation Submitted).

12. The implementation commit for the update proposal is stable on the chain (Implementation StablySubmitted).

13. The implementation is revealed (Implementation Revealed).

14. The implementation is stably revealed on the chain (Implementation StablyRevealed).

15. The implementation is rejected (Implementation (Is Rejected)), which means that the implemen-
tation gathered enough votes against it.

16. The implementation has no quorum (Implementation (Is WithNoQuorum)), which means that the
implementation gathered enough abstentions to go into the next voting round.
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17. The implementation is expired (Implementation (Is Expired)), which means that there was no
decision (for or against) reached after all the voting rounds are over.

18. The implementation has no verdict (Implementation (Is Undecided)), which means that the are
still voting periods that need to be completed, and we are awaiting for votes and a verdict.

19. The implementation is queued (Queued), which means that the implementation of an update proposal got
approved, and is waiting in the queue for its turn to be endorsed for activation.

20. The activation of a proposal is expired (ActivationExpired), which means that the implementation did
not get enough endorsements, and was therefore expired.

21. The activation of a proposal is canceled (ActivationCanceled).

22. The implementation of a proposal is unsupported (ActivationUnsupported), which means that the
version to that the implementation upgrades from will never be active on the chain (for instance because it
was already superseded by another version). This state also means that version the of update was activated
at some point, and superseded by another update (with a higher version).

23. The implementation is being endorsed (BeingEndorsed).

24. The implementation is scheduled for activation (Scheduled), which means that we are past the slot inside
an epoch where the endorsements of the proposal are counted and the implementation gathered enough
endorsements.

25. The update is active (Activated), which meant that the update is the current protocol version on the
chain.

Once we have the trace de-multiplexed into sequences of events per-update specification (see figure 5.1), we
can check:

– That only certain transitions can happen. For instance, it is legal for a proposal to go from the scheduled
to the activated state, but it cannot go from the SIP submitted to the activated state.

– Which conditions should be satisfied in that transition. For instance, if a proposal goes enters the SIP
submitted state, then the first action when the proposal enters that state should be the submission of the
SIP.

Figure 5.1: Valid state transitions of a specific update specification via trace de-multiplexing.

We will describe next how each generated trace is tested for conformance against our validation criteria.
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In the test code, for each generated trace, we de-multiplex it into one sequence of events per update specifi-
cation, and we check that said sequence is valid according to our specification. A sequence is considered valid if
each pair of adjacent elements:

– is a valid transition

– it satisfies the conditions we expect for that transition to take place.

The notion of validity is implemented by a validateTransition function, which pattern matches on all the
allowed transitions (and returns an error if a transition is invalid), and runs a series of checks depending on the
matched transition. The definition of the function encodes the state-machine that captures the behavior of the
update protocol, and has the following shape:

validateTransition
(E Unknown _fragment)
(E (SIP Submitted) fragment') = -- run some checks for this transition

validateTransition
(E (SIP Submitted) fragment)
(E (SIP StablySubmitted) fragment') = -- run some other check in this

transition
-- ... etc.

We invite the interested reader to check the repository where the implementation of the update prototype is
hosted [NAK21] for more details on how traces are de-multiplexed and fed into the function above, and also how
it is implemented.

The reader familiar with tabular-specifications [BH97] might notice that the validateTransition func-
tion resembles an instance of such specification. Henceforth, we refer to the right hand side of validateTransition,
i.e. the assertion, as the transition-test. In the following sections, when we describe how we checked certain val-
idation criteria we will be showing and explaining parts of this function.

5.1.1 Liveness properties

We mentioned previously that since all possible evolutions of the Cardano blockchain have to correspond to a
trace of the ledger, we can express safety properties of the ledger layer as properties on traces. The reader might
ask herself, what about liveness properties? Here, liveness denotes the property of the system of allowing useful
things to happen eventually, such as accepting proposals or votes, or activating an update proposal.

We address the problem of testing that the system allows useful things to happen by making sure that:

– No valid actions are rejected. In Section 5.2 we will show how we test that valid payload is not rejected
by the system. See for instance Section 5.2.1.

– Important classes of traces can be observed in the system. For instance, the system should allow proposals
to be activated. Section 5.3 provides further explanation on these kinds of tests.

5.1.2 Coverage

We have seen that we generate traces for a rather complex system, whose magnitude can be further appreciated
in the state transition table of Table 5.1. However a question that might be raised is how can we have a reasonable
degree of certainty that the generated traces are “complete”, under a certain notion of completeness.

The answer property-based testing provides to this question is coverage testing. In this approach, the idea
is to identify the major scenarios we would like our tests to cover. For instance, we would like to test cases
in which a proposal is waiting in the activation queue, or cases in which a vote is submitted outside the voting
period. Once this scenarios are identified, we classify the traces according to the scenarios they represent (if
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any). This is what in the property based testing jargon is known as labeling. Finally, by adding test suites that
check that a certain percent of these cases are covered we can have a high (statistical) degree of certainty that the
cases we are interested in will be generated during testing.

The QuickCheck library provides a checkCoverage2, function that checks that all the coverage require-
ments are met, using a statistically sound test, and fail if they are not met. We used the default confidence
parameters, where there’s a 10e-9 probability that we will get a false positive regarding the coverage of a label,
and a tolerance of 90% to a insufficient coverage result.

The results of our coverage tests are shown in Section 5.3.

5.2 Validation of the requirements

5.2.1 Open participation

Authorship of proposals should be preserved

In the tests we check that a proposal (SIP or implementation):

– can be marked as stably submitted only if the submission is stable on the chain

– can only transition to the revealed state from the stably submitted state

These checks are covered by the following cases of the transition validation, where the data constructor E can be
ignored, and do (in this context) is a notation used to sequence assertions:

-- ...
validateTransition
(E (SIP Submitted) fragment)
(E (SIP StablySubmitted) fragment') = do
-- The difference between the two states must be @stableAfter@.
validateStabilityEvent fragment fragment'
-- ...

validateTransition
(E (SIP StablySubmitted) _fragment)
(E (SIP Revealed) fragment') = do
-- ...

in the code snippet above validateStabilityEvent asserts that at least stableAfter slots have elapsed
between the first slot of the first fragment and the first slot of the second fragment, where stableAfter is the
number of slots that must pass for a transaction to become stable in the chain. So this part of the state-transition
property-test make sure that revelations only happen once they are stable on the chain, meaning that nobody can
plagiarize the revealed content once it is observed in the chain.

In addition, we need to ensure that the key used for submitting a proposal is the same key used to reveal it.
The update mechanism does not prescribe what the commit should be. In the implementation we defined the
commit as follows3:

type Commit era =
( VKeyHash era -- submitter of the commit
, Hash era (Int, VKeyHash era, Hash era (Proposal era))
)

This definition means that a commit not only contains the standard commit (i.e. the hash part), but also the
verification key of the submitter (VKeyHash era). Therefore, when checking that the submission Commit and

2https://www.stackage.org/haddock/lts-17.13/QuickCheck-2.14.2/Test-QuickCheck.html#v:checkCoverage
3where the era parameter can be ignored for the sake of the current discussion
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the revelation Commit match, we make sure that the hash of the verification keys of the submission and revelation
are the same, thus satisfying the validation criterion (6.a) of Section 6.3.1 found on deliverable [PRI20a], namely:

H(salt1||vk2||H(proposal1)) = H(salt0||vk0||H(proposal0)) ∧ vk1 = vk2

Valid proposal commitments are not rejected

Besides validating each event transition per-proposal, for each trace we also check that in the first event there are
not unjust rejections of valid update transactions. In particular, we check that no SIP commits can be rejected
unless the commitment signature does not verify, or the commitment was already submitted.

When the SIP that corresponds to a certain update has not been submitted to the system yet and we observe
that it reports the SIP commit as invalid, then it must be because this commit has an invalid signature. Note
that the first event of a proposal corresponds with the state in which said proposal is unknown to the system.
We check that there are no other SIP submissions observed in that first trace fragment, and thus an SIP commit
cannot be rejected because it was submitted at some earlier point in time, otherwise the state of the proposal
would not have been unknown.

This requirement is tested by means of the following check that, for each update proposal, pattern-matches
on the first element of an event trace (denoted as x:_ in Haskell):

noUnrightfulRejectionsInUnknowState ((E Unknown fragment):_) = do
-- The only action that we allow is implementation submissions. The update
-- system has no way to determine if the submission corresponds to an
-- approved SIP. This information is only available once we have a
-- revelation.
onlyImplementationSubmissionAllowed updateSpec fragment
-- A valid SIP's submission corresponding to @updateSpec@ should ¬ be
-- rejected in fragment, since in @fragment@ the system under test reports
-- that such submission didn't occur.
forall (invalidActions fragment)

(λ act → getSubmittedSIP act 6= Just (getSIPSubmission updateSpec)
∨ ¬ (signatureVerifies (getSIPSubmission updateSpec))

)

In this snippet Just x denotes the presence of an optional value (where Nothing denotes its absence). In the
code above we check that if a SIP submission (getSIPSubmission updateSpec) is invalid, i.e. it belongs
to invalidActions fragment, then it must be because its signature did not verify. This is expressed in our
testing framework by the use of the universal quantifier forall: to check a predicate p over a certain trace
(fragment) t we write:

forall t (λ x → p x)

where λ is a lambda abstraction (which allow us to write anonymous functions). In the snippet above the term
to the right of the lambda abstraction arrow is a Boolean assertion that will cause the test to fail if it evaluates
to false. Note that the proposal under consideration is unknown in the fragment (E Unknown fragment), and
therefore it cannot be rejected due to the proposal being already submitted.

We perform a similar check for implementations, which can be found in the project’s repository.

Valid proposal revelations are not rejected

This requirement is validated in the following transition check:

validateTransition
(E (SIP Submitted) fragment)
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(E (SIP StablySubmitted) fragment') = do
-- ...
forall (invalidActions fragment')

(λ act → getRevealedSIP act 6= Just (getSIPRevelation updateSpec)
)

when a given proposal is in the stably submitted state, we know that there is a corresponding commit submitted
to the chain that is also stable. So this means that the revelation of the proposal (getRevealedSIP act) must
be accepted. Therefore, we check that all invalid actions in the trace fragment where a proposal is in the stably
submitted state are not the revelation of that proposal.

We perform an analogous check for implementations revelations.

Valid proposal votes are not rejected

As soon a SIP proposal is stably revealed, this means that the vote period is open. From the stably revealed state,
a proposal can go to only any of the following three states:

1. a verdict is reached on the proposal, but no implementation commit was submitted

2. a verdict is reached on the proposal, and an implementation commit was already submitted, but it is not
stable yet.

3. a verdict is reached on the proposal, and an implementation commit is stably submitted.

in terms of test implementation, this means that we have the following three cases in our transition test:

validateTransition
(E (SIP StablyRevealed) fragment)
(E (SIP (Is what)) fragment') = do
validateVerdictEvent (getSIP updateSpec)

(getSIPVoteOf (getSIPId updateSpec))
fragment
(firstEvent fragment')
what

-- ..
validateTransition
(E (SIP StablyRevealed) fragment)
(E (Implementation Submitted) fragment') = do
validateVerdictEvent (getSIP updateSpec)

(getSIPVoteOf (getSIPId updateSpec))
fragment
(firstEvent fragment')
Approved

-- ..
validateTransition
(E (SIP StablyRevealed) fragment)
(E (Implementation StablySubmitted) fragment') = do
validateVerdictEvent (getSIP updateSpec)

(getSIPVoteOf (getSIPId updateSpec))
fragment
(firstEvent fragment')
Approved

-- ..
-- ..
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in each of these cases we validate the verdict event reached due to the actions occurred in the transition fragment.
The validateVerdictevent checks, among other things, that no votes are incorrectly rejected. The interested
reader can check the code to find out more about the details of this function’s implementation.

We omit the validation code for the implementation case since it is analogous to the SIP case. The code can
be found in the project’s repository.

Valid implementation endorsements are not rejected

We need to check that when a proposal is being endorsed there are no unexpected rejections of endorsements. A
proposal being endorsed can go into the following states:

– scheduled, if the proposal gathered enough endorsements;

– expired, if the proposal did not get enough endorsement at the end of its endorsement period;

– queued, if a proposal with higher priority that can follow the current protocol version entered the activation
phase; or

– canceled, if the proposal was explicitly canceled by an cancellation proposal.

these cases encoded in the validateTransition function:

validateTransition
(E BeingEndorsed fragment)
(E Scheduled fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
Scheduled

-- ..
-- ..
validateTransition
(E BeingEndorsed fragment)
(E ActivationExpired fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
ActivationExpired

-- ..
-- ..
validateTransition
(E BeingEndorsed fragment)
(E Queued fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
Queued

-- ..
-- ..
validateTransition
(E BeingEndorsed fragment)
(E ActivationCanceled fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
ActivationCanceled
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-- ..
-- ..

In each of these cases we validate the activation verdict event using the validateActivationVerdictEvent
function, which, in particular, checks that no endorsements are incorrectly rejected in each of the endorsement
intervals of the fragment in which the proposal is being endorsed:

validateActivationVerdictEvent
updateSpec endorsementsFragment tallyEvt updateState = do
-- ...
forall proposalEndorsementIntervals

(λ (endorsementInterval, _, _) →
forall (invalidActions endorsementInterval)

noUnexpectedEndorsementRejection
)

5.2.2 Decentralized decision making

Votes are correctly tallied

We have seen in Section 5.2.1 that we call function validateVerdictEvent in each fragment in which the
voting period is open. This function also tallies the votes that are present in the trace fragment that is given to it,
and compares this tally result against the tally result reported by the system.

Endorsements are correctly tallied

We have seen in Section 5.2.1 that we call function validateActivationVerdictEvent in each fragment
in which a proposal is being endorsed. This function also counts the endorsements present in the given trace
fragment, and compares this result against the verdict reported by the system.

Decisions are honored by the protocol

Our property-based tests check that only the transitions shown in Table 5.1 (Section 5.2.3) are allowed. Further-
more, when a verdict is reached we check that such verdict is correct. In particular, when we go from the “SIP sta-
bly revealed” to the “implementation (stably) submitted” state we also check, using the validateVerdictEvent
function, that the SIP was approved. Similarly, when we go from the “implementation stably revealed” state to
the “implementation is being endorsed” or “implementation is queued” states, we check that the implementation
was approved, also via the validateVerdictEvent function. So this shows that our property test check that:

– an implementation can only be revealed if its corresponding commit is stably submitted. In turn, an
implementation commit can only be submitted if the corresponding SIP was approved. When an SIP is not
approved (is rejected, has no-quorum, or it expired) we can see that there are no transitions into any of the
implementation states.

– an implementation can only go into any of the activation states (queued or being endorsed), only if the im-
plementation is stably revealed and was approved (which is checked in our testing by the validateVerdictEvent
function). If the implementation is not approved (is rejected, has no-quorum, or it expired) then we can
see that this proposal does not enter any of the activation states.
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5.2.3 Protocol driven

The update system runs on Cardano

We have incorporated the protocol in Cardano, and have run an end-to-end test that demonstrates the work-
ing integration on a testnet. The integration was done across different components (please refer to Priviledge
deliverable [PRI20c] for a detailed description of our prototype integration architecture to the Cardano node):

Ledger The update logic was incorporated to the ledger. We spent a considerable amount of work to adapt
the ledger code so that it could work with any update mechanism, and those changes were merged in the
master branch of the ledger, and are released into mainnet.

Consensus The consensus layer had to be adapted as well so that it could work with different update mechanisms
than the one of Shelley (the release of Cardano that our integration was based).

Node The node needed to incorporate the new versions of consensus and the ledger.

Client The Cardano client is the main vehicle used to submit transactions when running low level tests like the
ones we needed to run for verifying this validation criteria. We had to modify the client so that it could
process the new update payload.

DevOps To deploy and run the tests on a testnet we had to elaborate a setup that developers could use to test
new prototypes. These changes were also merged to the master branch of the Cardano DevOps repository.

We successfully ran a test on a testnet consisting of 8 nodes distributed across 4 countries located in 3
different continents. The test scenario involved a node submitting an SIP and its implementation, and all the
nodes voting and endorsing the proposals. The proposal we activated on this testnet doubled the maximum block
size.

In addition to the nodes submitting the update payload, we ran a transaction generator that submitted random
UTxO transactions. The idea behind this generator was to show that the regular transactions could be successfully
submitted before, during, and after an update took place.

In Figure 5.2 we show a screenshot of the demo’s output. Here we can see on the left side the part of the
ledger state that shows the proposal became a candidate and was endorsed by the 8 pool nodes. On the right we
can see the output of the process that periodically transfers a random amount of ADA to newly created addresses.

Figure 5.2: Scheduled update
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Figure 5.3: Activated update

In Figure 5.3 we can see the update being activated when we are in a new epoch after the candidate proposal
was endorsed by all the nodes in the network. We can see that the current version changed to the proposal’s
version (77), and that that the maximum block size was doubled as dictated by the update proposal.

The code for the demo can be found in the Cardano DevOps repository [IOH21], commit with hash:

715f6766b7df5634ee430a38bf187e5d77da771e

The update protocol works as expected in Cardano

We run several manual and scripted tests after running the integrated system. We observed that updates could be
successfully carried out (as described also in Section 5.2.3), and also that payload that violated the protocol was
correctly rejected. For instance, when trying to reveal an SIP that was not stably committed, the system rejected
this revelation as expected. Similarly, the system rejected votes that came outside the voting period.

Note that even though we tested the integrated system with a couple of cases, we ran hundred of thousands
property-tests on the update implementation, which lies at the heart of this integration.

Update events are eventually stored in the Cardano blockchain

Our prototype incorporates the update payload in the transaction body:

data TxBodyRaw era = TxBodyRaw
{ inputs :: !(Set (TxIn (Crypto era))),
outputs :: !(StrictSeq (TxOut era)),
certs :: !(StrictSeq (DCert (Crypto era))),
wdrls :: !(Wdrl (Crypto era)),
txfee :: !Coin,
vldt :: !ValidityInterval, -- imported from Timelocks
update :: !(StrictMaybe (Update.Payload era)),
adHash :: !(StrictMaybe (AuxiliaryDataHash (Crypto era))),
mint :: !(Value era)

}

Since transactions are stored in blocks, and blocks are eventually stored in the blockchain, all the valid update
events are eventually stored in the Cardano blockchain.
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The proposal state transitions should be specified and verified

In Table 5.1 we specify the allowed state transitions in a proposal state, as reported by the update protocol. The
meaning of these states was explained in Section 5.1. For proposals, (SIP or implementations) following there is
a predefined sequence of events that relate to them: first it is committed onto the chain, after the commit is stable
this proposal is revealed, once the revelation is stable, the voting period starts, and after the end of the voting
period is stable the votes are tallied. These events are represented in Figure 5.4.

commit reveal voting start voting end tally

Figure 5.4: Proposal time line

An update proposal starts in the “Unknown” state, which means that the SIP commit corresponding to that
update proposal has not been submitted yet. Most transitions seem sensible, however there might be some state
changes that, at first sight, might not make sense to the reader. We will explain those transitions next.

– An update can go from the SIP stably revealed to the implementation (stably) submitted state because the
update implementation commit could be submitted at any time, even if there is no corresponding approved
SIP. This is because a commit is basically a hash, so there is no semantically relevant information that the
system can validate, till that commit is revealed. So this transition can happen when an SIP was approved
and the implementation corresponding to that SIP was already present in the system.

– There is no corresponding “implementation is approved” state, since once an implementation gets ap-
proved, it immediately enters the activation phase, so it either gets queued, becomes the candidate (“being
endorsed”), is canceled (if a cancellation for that proposal was approved at the same time the proposal
entered the activation phase), or gets marked as unsupported if the update supersedes a protocol version
that can never be adopted.

The transition set specified in Table 5.1 is encoded by function validateTransition, which was intro-
duced in Section 5.1,

Using property-based testing was crucial to reach a a high degree of assurance on the completeness of the
updates state-transition-specification. In several occasions QuickCheck was able to successfully able missing
cases (transitions) in the specification after running the tests. In particular, some of the non-intuitive but legal
transitions described above were found by our property tests.

5.2.4 Transparent and auditable

As described in [PRI20a], this validation criterion is covered by criteria 5.2.3, 5.2.2, and 5.2.2.

5.2.5 Secure activation

Secure Activation Protocols

A secure activation protocol is one that achieves a secure transition from the current version of the consensus
protocol to a new one. We have formally defined what is a secure activation and have proposed two distinct
protocols that provably achieve this. In a nutshell, secure activation means, the secure transition from the old
ledger (L1) to the new ledger (L2) in a way where:

– L2 enjoys liveness [GKL15]

– L2 enjoys consistency [GKL15]

– L2 has L1 as a prefix
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From To
Unknown SIP submitted
SIP submitted SIP stably submitted
SIP stably submitted SIP revealed
SIP revealed SIP stably revealed
SIP stably revealed SIP is rejected
SIP stably revealed SIP has no quorum
SIP stably revealed SIP is expired
SIP stably revealed SIP is accepted
SIP is rejected SIP is stably rejected
SIP has no quorum SIP has stably no quorum
SIP is expired SIP is stably expired
SIP is accepted SIP is stably accepted
SIP is approved implementation is submitted
SIP is stably approved implementation is submitted
SIP is stably revealed implementation is submitted
SIP is stably revealed implementation is stably submitted
implementation is submitted implementation is stably submitted
implementation is stably submitted implementation is revealed
implementation is revealed implementation is stably revealed
implementation is stably revealed implementation is rejected
implementation is stably revealed implementation has no quorum
implementation is stably revealed implementation is expired
implementation is stably revealed implementation is accepted
implementation is rejected implementation is stably rejected
implementation has no quorum implementation has stably no quorum
implementation is expired implementation is stably expired
implementation is accepted implementation is stably accepted
implementation is stably revealed implementation is queued
implementation is stably revealed implementation is being endorsed
implementation is stably revealed implementation activation was canceled
implementation is stably revealed update is unsupported
implementation is being endorsed implementation is scheduled
implementation is being endorsed implementation activation expired
implementation is being endorsed implementation is queued
implementation is being endorsed implementation activation was canceled
implementation is queued implementation activation was canceled
implementation is queued update is unsupported
implementation is queued implementation is being endorsed
implementation is scheduled implementation was activated
implementation was activated update is unsupported

Table 5.1: Update proposal allowed state changes

Our first activation protocol requires the structure of the current and the updated blockchain to be very similar
(only the structure of the blocks can be different) but it allows for an update process more simple and efficient.
The second activation protocol that we propose is very generic (i.e., makes few assumptions on the similarities
between the structure of the current blockchain and the updated blockchain). The drawback of this protocol
is that it requires the new blockchain to be resilient against a specific adversarial behavior and requires all the
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honest parties to be online during the update process. However, we show how to get rid of the latest requirement
(the honest parties being online during the update) in the case of proof-of-work and proof-of-stake ledgers. The
interested reader can find more details on this topic, as well as all the relevant formal proofs that validate our
results, in our paper [CKKZ20].

The adoption threshold is honored

As we shown in Table 5.1, an update proposal can only be activated after being scheduled, and our property tests
validated that our implementation satisfies this property. Let’s turn our attention next to the conditions under
which a proposal can become scheduled.

We have that, according to our transitions specification, and update can be marked as scheduled only after
being endorsed. When this transition happens, in the tests we make sure that in the fragment that precedes the
change to the “scheduled” state, we have enough stake endorsing this proposal:

validateTransition
(E BeingEndorsed fragment)
(E Scheduled fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
Scheduled

In the snippet above, the validateActivationVerdictEvent function checks that if the update state was set
to “scheduled”, then we should observe enough endorsements in the last endorsement interval of fragment. See
[PRI20d], for an explanation of endorsements interval, and [NAK21] for details on how function validateActivationVerdictEvent
is implemented.

The update system preserves history across hard fork boundaries

As described in [PRI20a], this validation criterion is covered by criterion 5.2.3.

5.2.6 Performant and scalable

Transaction throughput is not significantly affected

An important measurement of a blockchain system’s performance is the number of transaction bytes per-second
(TBPS ) it can sustain. Unlike the more commonly used metric, transactions per-second, this number is not
dependent on the chosen size of a transaction (which would allow to manipulate it at will by choosing different
transactions sizes). Running an update mechanism on the blockchain should not result in a substantial perfor-
mance degradation. Therefore, in this section we estimate the impact on performance that the proposed update
mechanism will have on a system’s TBPS. Our estimations are based on worst case scenarios, which allow us to
determine upper bounds for the performance impact of the update mechanism.

Given a payload size in bytes (psize) that needs to be stored in a blockchain, the blockchain’s throughput
measured in TBPS , and the duration of the update process (durationu), we can calculate the percentage of the
system’s TBPS (usagepct ) that will be used by the update payload as follows:

usagepct = 100
psize

TBPS durationu

An update consists of several phases (ideation, implementation, approval, and activation). In each phase,
there are three types of messages being sent: commits, reveals, and votes.

Before the voting phases, where votes can be cast by the participants, each update requires only two messages
spread across two stability windows, needed for transactions to stabilize in the chain. These stability windows

49



D1.3 – Use Case Validation

are quite large, e.g. in Cardano the stability window is 1 day and a half. As a result, only two messages need to
be transmitted for the commit-reveal phase over a large period of time, which means that a blockchain system
can easily handle this. This leaves us with the voting phase as the sole source for performance degradation that
can be caused by the update mechanism.

In addition, note that we only need to consider the additional load introduced by the update mechanism
during a single phase. It is in the voting period of each phase where the system should be able to handle the
additional load, since the update mechanism introduces very little load between voting phases.

We define the worst-case scenario for a voting period in terms of

– number of participants (np), e.g. voters (note that in the worst case scenario everybody will vote, regardless
of their stake, which means that the stake distribution is irrelevant for this analysis)

– number of update proposals being voted at the same time (nc), during the same period (note that in the
worst case scenario multiple update proposals will coincide in the start and end of the voting period,
otherwise the system would have a larger time interval to distribute the load).

– number of time a participant changes her vote (nr), per-update proposal

Then, we can calculate the worst case scenario for the number of bytes that need to be transmitted as part of the
vote payload (psizev) as:

psizev = svnpnrnc

The size in bytes for sv was obtained by calculating the size CBOR encoding [BH13] of the vote payload of
our prototype. This payload includes:

– The hash of the voted SIP. We use 32 bytes hashes, so considering the 1 byte CBOR tag this gives us a
total 33 bytes.

– The confidence (for, against, abstain), which can be encoded in 1 byte (which also included the CBOR
tag).

– The key of the voter. We use 32 bytes keys, so this give us a total of 33 bytes, when we consider the CBOR
tag.

– The vote signature. We consider 64 bytes signatures, which are accompanied by a 32 bytes key. This
results in 64 + 32 + 1 bytes required for the signature.

So a vote requires in total 164 bytes.
Table 5.2 shows the results of the worst case analysis for different parameter values, where durationv is

the number of voting days, which was used to calculate the voting period duration. For this analysis we use
the TBPS that Cardano currently achieves in mainnet: 3.2 Kb/s. This number is obtained from dividing the
maximum block body size, 64 Kb, by the number of seconds per-block, 20.

Figure 5.5 shows the worst case usage as a function of the number of participants, assuming 10 concurrent
update proposals, a 7 day voting period, and each participant changing her vote twice.

Looking at Table 5.2 and Figure 5.5, we can see that the usage percentage scales linearly in the number of
participants4, i.e., a 10 times increase in the number of participants will increase 10 times the required usage
percent. We can see that the impact of the update protocol on the system’s performance is negligible up to
100, 000 participants and 1 proposal being voted.

However, in spite of the usage percentage being a linear function of the number of participants, when we
pass the million participants or 100, 000 participants vote on 10 proposals at the same time, we start seeing a
considerable impact of the update protocol on the system’s performance. In case 1 million participants would
vote on 10 proposals at the same time, the system could not process the extra payload. Nevertheless, this would

4Note the logarithmic scale used in Figure 5.5
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np nr nc durationv usagepct
1000 2 1 7 0.017
1000 2 5 7 0.083
1000 2 10 7 0.166

10000 2 1 7 0.166
10000 2 5 7 0.828
10000 2 10 7 1.655

100000 2 1 7 1.655
100000 2 5 7 8.277
100000 2 10 7 16.555

1000000 2 1 7 16.555
1000000 2 5 7 82.773
1000000 2 10 7 165.546
1000000 2 10 14 82.773
1000000 2 10 30 38.627

10000000 2 1 7 165.546
10000000 2 5 7 827.729
10000000 2 10 7 1655.458

Table 5.2: Worst-case analysis TBPS for a voting period
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Figure 5.5: Worst case scenario analysis for system’s usage with 10 concurrent update proposals

require that the worst case conditions we assume in this analysis being met: 10 SIP’s being voted at the same
time over the period of 7 days, where each participant votes twice. In practice we will have a much higher
voting duration, and not all proposals will overlap exactly in their voting period, which means that the additional
payload can be spread across a much larger time interval.

There are several alternatives to allow a blockchain system to accommodate more participants or concurrent
update proposals:

– Use of expert pools. By having the participants delegate their voting rights, the number of voters can be
substantially reduced, while increasing voter’s turnout.

– Increase in the duration of the voting period. We have used a very short voting duration (7 days). In
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practice update proposals would require that voters are given a much longer time to decide, specially if the
update proposal has a large impact on the network.

– Increase the maximum block size that the protocol allows, which will result in a larger TBPS. Note also
that the current maximum block size in the Cardano protocol, which we use for our worst case analysis, is
quite small but sufficient for accommodating the blockchain current usage. If the blockchain would need
to process additional payload, experiments show that Cardano can increase its maximum block size up to
1Mb, which would result in a tenfold increase in the TBPS, and therefore a tenfold increase in the number
of participants that the update protocol can accommodate.

The back-of-the-envelope calculation described in this section was put to the test against the data generated
by actual runs of the update protocol on a testnet. We present next the setup of our experiments and the results
we obtained.

Our goal was to measure the impact of the voting process on the blockchain’s transaction throughput. To this
end, we fixed the protocol parameters of the network, and ran experiments in which we gradually increased the
number of participants that voted on a proposal.

We used the testnet setup described in Section 5.2.3, which consisted of 10 nodes running a stake pool each.
The nodes were deployed on AWS machines, distributed across 4 countries and 3 continents.

The protocol parameters were chosen in such a way that they resembled the mainnet conditions, while al-
lowing us to run experiments in a reasonable amount of time. This means that in our testnet:

– like the Cardano network, blocks were produced every 20 seconds.

– unlike the Cardano network, the stability window was set to 36 minutes (in Cardano this is 36 hours).

Using these parameters we could run each experiment in about 2 hours, depending on the number of voters, since
more voters required more time to register staking keys, which we used as voting keys.

In each node that ran a stake pool (pool node) we ran:

– 50 threads that were constantly submitting UTxO transactions to the network.

– a varying number of threads that submitted the votes on a given SIP proposal.

Each experiment carried out the following steps:

1. Start the UTxO transaction submission threads.

2. Register stake keys that will be used to vote on the SIP.

3. Submit an SIP commit, wait for it to become stable on the chain, and then reveal the SIP.

4. Wait for the voting period for the submitted SIP to open and then have all the participants in all the nodes
vote in parallel.

5. After all participants voted, check that the number of voters matched the expected number of participants
to make sure that each vote went through.

After running the experiment we analyzed the script and node logs to count the number of UTxO transactions
that were submitted during the voting period. Table 5.3 shows the results we obtained, and this information is
also plotted on Figure 5.6.

The results shown in Table 5.3 coincide with our back-of-the-envelope calculation regarding the impact of the
voting phase on the transaction throughput. We can observe a linear relationship between TPS (or equivalently
usage) and number of participants.
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Voters per node TPS Usage %
1 16.64764543 0.036

10 16.5933518 0.362
100 16.04376731 3.662
250 15.14626039 9.051
500 13.64155125 18.087
750 12.13795014 27.115

1000 10.63822715 36.121
1250 9.127977839 45.189

Table 5.3: Experimental results on TPS
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Figure 5.6: Experimental results on TPS

Transaction latency analysis

Additionally to the throughput, in our testnet experiments, we have measured the impact on the transaction
latency. By “latency”, we mean the average end-to-end time from the transaction submission until it appears in
the ledger. To this end, we have used the same setup as in the throughput experiments. In other words, a 10 node
geographically distributed network, where 50 threads per node constantly submit transactions and we utilize a
varying number of voters that try to vote in a 30 minute voting period window.

In table 5.4, we record our main results. Initially, with a single voter per node and as we are submitting
transactions almost at maximum capacity, we observed an average latency of around 25 seconds. Then, as we
gradually increase the number of voters, we observe the latency increasing. In the rightmost column of table
5.4, we have recorded the factor by which this latency-increase takes place for each increase of the voters load.
In figure 5.7, we observe a quadratic increase of the latency with the increase of the load. Note that when the
voting period is open, all participants vote at the same time. As a consequence a queue is formed which causes
the latency to increase. The size of this queue will be dependent on the number of participants. Clearly, all
participants voting at the same time is unrealistic, but even in this extreme situation we can accommodate a large
number of votes (12500) in 30 minutes. Moreover, apart from the simultaneous voting, a more realistic voting
duration (e.g., of some days, or weeks) would make the latency even more tolerant to the increase of the load.
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Voters per node (Average) Latency (sec) Times increase
1 25.90 1

10 25.88 1
100 25.36 1
250 46.73 1.8
500 105.99 4.1
750 214.54 8.3

1000 397.76 15.3
1250 692.38 26.7

Table 5.4: Experimental results on Latency
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Figure 5.7: Experimental results on Latency

Low-impact on processing time

Clearly the most processing intensive task of the update mechanism is the tally phase. It is the phase where all
the collected votes are counted in order to reach a decision for a specific proposal.

We start with a theoretical time complexity analysis where we assume a worst-case scenario, where we have
n participants that all of them vote by submitting a single vote. Also we assume that we have a single proposal,
so that within a voting period, the number n of participants coincides to the number of submitted votes.

In the following, we try to break up the operations during the tally phase. In the heart of the tally phase lies
the following function call, which is called for each proposal.

Listing 5.1: Tally phase initial function call
tallyStake confidence result ballot stakeDistribution adversarialStakeRatio
=
if stakeThreshold adversarialStakeRatio (totalStake stakeDistribution)
<
stakeOfKeys votingKeys stakeDistribution
then Just result
else Nothing
where
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votingKeys = Map.filter (== confidence) ballot

Function stakeThreshold is constant whereas Map.filter 5, is O(n) so votingKeys is O(n), where
n is the number of votes, which as we have said coincides to the number of participants. At this point, we have
a single pass (loop) over n votes.

The remaining function used in the definition of tallyStake, stakeOfKeys, calculates the stake associ-
ated to the given key-map, and is defined as follows:

Listing 5.2: Code example
stakeOfKeys
keyMap
StakeDistribution
{ stakeMap
}
= Map.foldl (+) 0 (stakeMap `Map.intersection` keyMap)

The intersection function in the worst-case is O(n)6. Therefore this is a second pass (loop) over the data of
length n. Finally, we call foldl with a constant time operation, +, which means that this call is alsoO(n)7. This
is a third pass (loop) over the data of length n. Thus from the above analysis we see that we have for a single
proposal a call of tallyStake, where in each such call we have three passes over the data of length n. So in
total for a single proposal we do 3 passes over the data of length n. That is 3n operations, which means that the
tally time complexity is O(n).

This result is also confirmed by the experimental evaluation shown in Figure 5.8, where we see that the
processing time increases linearly with the number of participants. In addition, we see that it takes almost
one tenth of a second to process the votes of 1 million participants. These results correspond to a single-core
execution of the tally algorithm on a i7 CPU laptop with 32GB of RAM.
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Figure 5.8: Worst case scenario analysis for tally phase processing time

5http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Strict.html#g:25
6http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Strict.html#v:intersection
7http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Strict.html#v:foldl
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Low-impact on memory usage

Finally, we present the measurements of the memory consumption during the tally phase. Again as the graph
in Figure 5.9 shows, the memory allocated scales linearly in the number of participants. Moreover, our mea-
surements show that the allocated memory essentially corresponds to the space required for storing the 256 bit
hashes of the public keys of the participants in a Haskell map structure8.
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Figure 5.9: Worst case scenario analysis for tally phase consumed memory

The system should scale

Based on the results shown in the previous sections, we can see that overall the system scales quite efficiently
with the number of participants. With respect to transaction throughput, processing time and memory consump-
tion, we have observed a linear relationship with the number of participants, while for transaction latency our
measurements showed a slow quadratic increase under the (unrealistic) burst condition of simultaneous voting,
which the system can handle.

5.2.7 Metadata driven

The voting period length is honored

In each transition where a voting period can take place, we use function validateVerdictEvent to make sure
that the voting period length is honored by the implementation of the update protocol. This function computes
the voting intervals based on the voting period duration of the proposal. Using these interval, the voting results
computed by the testing code is contrasted with the voting results reported by the system. If there would be
a mismatch between the voting period duration used by the test and the implementation, assuming a sufficient
coverage of our property tests, then we should be able to find a counterexample where due to the different voting
intervals there would be a mismatch between either:

– the voting results, or

– the validity of a vote
8http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Strict.html
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Version dependencies are honored

We guarantee that for all updates that enter the “implementation is being endorsed” phase, the protocol version
and id that the candidate supersedes coincides with the current protocol version and id. So in the transitions that
lead to the BeingEndorsed state, we check:

getCurrentProtocolVersion (firstState fragment')
==! supersedesVersion (getProtocol updateSpec)

getCurrentProtocolId (firstState fragment')
==! supersedesId (getProtocol updateSpec)

Priorities are honored

As with the check in the previous section, in all proposal state-transitions that lead to the BeingEndorsed state,
we check that the new candidate has the highest priority among the queued proposals during the trace fragment
in which said proposal is being endorsed:

validateTransition
(E Queued _fragment)
(E BeingEndorsed fragment') = do
-- ..
forall
(candidatesIn fragment' `withIdDifferentFrom` updateSpec)
(λ protocol →

version (getProtocol updateSpec) < version protocol)

The assertion above checks that all the queued candidates in fragment', which are not the update proposal
being endorsed, have a protocol version higher than the protocol version of the proposal being endorsed.

The deployment window is honored

As explained in Section 5.2.2, the test code computes the endorsement results and checks them against the result
reported by the implementation. To compute the endorsement results, the test code uses the deployment window
of the candidate proposal. Therefore, if there was a discrepancy between the deployment window used by the
implementation and the expected deployment window (given by the proposal’s metadata), the tests would find a
counterexample showing a mismatch in the endorsement results.

5.2.8 Update logic consistency

Consistent update logic

The test code checks that a proposal is activated when ( [PRI20d]):

– it is approved,

– meets its dependencies and does not conflict with the current version,

– has the highest priority among competing proposals, and

– receives enough endorsements.

Let’s dig into the details of how the test code performs these checks.
The transitions specification of Table 5.1, which we property-test that the implementation satisfies, only

allows a proposal to enter the activation phase if the implementation was previously approved. When a proposal
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enters the activation phase for the first time it can only be in one of the “queued” or “being endorsed” states: if
the proposal has the highest priority among other proposals in the queue and it can follow the current version,
then its state will be “being endorsed”, otherwise its state will be “queued”. Similarly, by inspecting this table
we can see that we can enter the implementation phase only when the corresponding SIP was approved, as we
explained in Section 5.2.2.

Dependency and conflict resolution is achieved by protocol version checking: a proposal declares the proto-
col version it supersedes. This ensures that an update has only one dependency: the only version to which it can
be applied. Conflicts between two updates that want to upgrade to the same version are resolved by choosing the
update with the highest priority, which is determined by the protocol version (the lower the version the higher
the priority). In the test code we make sure that an update can only be endorsed if the protocol version and id
that it declares to supersede coincides with the current version, as explained in Section 5.2.7.

In the test code we also check that an endorsed proposal has the highest priority among competing proposals,
as explained in Section 5.2.7.

Finally, we can see that the transitions specification of Table 5.1, only allows a proposal to be activated after
being scheduled. When a proposal enters the scheduled state, we check, using function

validateActivationVerdictEvent

that the proposal got enough endorsements.

validateTransition
(E BeingEndorsed fragment)
(E Scheduled fragment') = do
validateActivationVerdictEvent updateSpec

fragment
(firstEvent fragment')
Scheduled

-- ...

5.3 Validation results

We implemented and ran our property tests. The test that checks our validation criteria according to the method-
ology described before (“Changes in the state of update proposals are valid”) passed after running 100,000 test
cases, each of which tested a trace of length between 0 and 1,000. Figure 5.10 shows the output of the execution
of our property tests. In particular, the state change validation tests ran the 100,000 cases in about 3.6 minutes.
Note that the large amount of test cases should be typically done in CI, upon a pull request, when we want higher
assurance on the correctness of the implementation. While maintaining the code, a smaller number of tests cases
can be run.

The screenshot of Figure 5.10 also shows a number of tests that output “OK, failed as expected”. This is
QuickCheck terminology9 and should be interpreted as “the test case appeared in the trace as expected”. These
tests provide a way of testing the coverage of our trace generation. For instance, we want to make sure we
generate traces where SIP are expired, or where implementations are waiting in the activation queue, but without
explicitly defining instances of these traces by hand. These tests make sure that these cases are actually covered.
If a particular case is found (e.g. “Implementations are expired”), QuickCheck will regard this as a successful
test, whereas if such case is not found it will report a failure.

The tests whose output is shown in Figure 5.10, validate that the update system allows certain important
scenarios to happen. Next to these basic coverage tests, we also classified the traces according to the scenarios
they represented, and used QuickCheck to make sure that the generators always generated said scenarios with

9It really means that Quickcheck found a counterexample violating a certain property.
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Figure 5.10: Property tests results

a high degree of probability. Figures 5.11 and 5.12 show the part of the output of our coverage tests run. There
we can see for instance that:

– in more than 96% of the traces, a trace is generated where the SIP revealed when its corresponding commit
is not stable in the chain.

– in more than 68% of the traces, an implementation is voted when the SIP is stably revealed, but no cor-
responding implementation has been revealed yet (which cannot be the case since the SIP was not yet
approved).

– in more than 0.0823% of the traces there is a proposal whose activation is canceled. This might not seem
like a lot of cases, but one has to consider the large amount of traces that are generated. For instance,
we test our properties in 100,000 traces, which means that about 82 traces will contain an example of a
proposal that is canceled. This is already quite impressive if one considers the fact that we did not guide
the generation of traces, i.e. actions are randomly generated, and the fact that we need a lot of events
occurring at the right time for a proposal to be canceled. For instance we need at least two proposals with
the same version, which have to go through two approval phases, and have to be approved at about the
same time so that the proposal that is approved last can cancel the proposal that is approved first.

We have identified 106 important scenarios. For the sake of brevity we do not describe them in this report,
and invite the interested reader to look at the implementation for the full details.
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Figure 5.11: Coverage test results

Using QuickCheck to find examples of traces is also useful to investigate the behavior of the protocol
through the examples that this tool finds. For instance, when QuickCheck found an example of a trace where
a proposal was activated, we realized that the protocol allowed an implementation to be committed before its
corresponding SIP was approved. Although counterintuitive, this behavior is sensible since a commit is basically
a hash, and as such, there is no semantically relevant information that the protocol can check, other than the fact
that the commit was not already submitted. An example contains information about the participants, their stake
distribution, the consensus protocol parameters such as the stability-window, etc. In case a test failure is found,
this example becomes our “counterexample”. Below we show some parts of the example that demonstrates that
our protocol allows proposals to be activated, in particular the stability window tsK, the maximum number of
voting periods, the slot at which the tests start, the number of slots per-epoch, the list of participants and the stake
they posses, and the list of actions that are run in the trace:

UpdateTestSetup
{ tsK = BlockNo { unBlockNo = 1 }
, tsMaxVotingPeriods = VotingPeriod { unVotingPeriod = 1 }
, tsCurrentSlot = SlotNo { unSlotNo = 0 }
, tsSlotsPerEpoch = SlotNo { unSlotNo = 5 }
-- ..
, tsParticipants =
[ ( Participant
( ParticipantId 3 )
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Figure 5.12: Coverage test results (cont)

, 2
)

]
, tsActions =
[ SIPCommit
( SpecId { unSpecId = 1 } )

, JustTick
, JustTick
, SIPReveal ( SpecId { unSpecId = 1 } )
, JustTick
, JustTick
, ImplCommit
( SpecId { unSpecId = 1 } )
, JustTick
, SIPVote
( MockVote
{ voteVoterId = MockVoterId
{ unMockVoterId = ParticipantId { unParticipantId = 3 } }
, voteCandidate = MPId 1
, voteConfidence = For
, voteSignatureVerifies = True

}
)
, JustTick
-- ...

In addition to the property tests, we have written and run a series of unit tests to check and also to illustrate
different aspects of the update protocol. Below we show a snippet of a test-case that checks that an implementa-
tion is approved:

-- Precondition: the update SIP should be stably approved
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approveImplementation :: UpdateSpec → TestCase
approveImplementation update = do
stateOf update `shouldBe` SIP (IsStably Approved)
submit `implementation` update
tickTillStable
reveal `implementation` update
stateOf update `shouldBe` Implementation Revealed
tickTillStable
approve `implementation` update
stateOf update `shouldBe` Implementation StablyRevealed
tickFor (Proposal.votingPeriodDuration (getImpl update))
tickTillStable
stateOf update `shouldBe` Implementation (Is Approved)

Figure 5.13 shows the results of the unit tests results. The complete set of unit tests can be found in the project
repository [NAK21].

The screenshots of Figures 5.10 and 5.13 show all the tests green. This was of course not always the case.
During the implementation of the prototype, the property tests allowed us to discover several bugs, which we
will discuss next.

Zero threshold We implemented a function that calculated the approval threshold for update proposals (SIP or
implementations) based on the adversarial stake ratio and the total stake. This function was defined as follows:

stakeThreshold r_a totalStake =
round (1/2 * (r_a + 1) * fromIntegral totalStake)

Our tests found that proposals were approved without votes, and activated without endorsements. This is because
this function returns 0 when r_a is 0 and the total stake is 1. Even though this is a rare corner case, it could have
been a serious problem in a permissioned blockchain in which one node was in charge of carrying out updates.

Cutoff slot The cutoff slot is the last slot in which endorsements are considered for an epoch. We calculated
the cutoff slot as:

nextEpochFirstSlot - 2 * stableAfter

The problem is that this calculation causes the protocol to fail if

slotsPerEpoch < 2 * stableAfter

Our tests managed to detect this error.

Entering the endorsement period at the wrong time A proposal can be endorsed only when ( [PRI20d]),
after being approved:

– Has the highest priority among all the queued proposals

– The protocol version it supersedes equals the current version

– The protocol version id it supersedes equals the current version id

However, our tests found that in the implementation we did not consider the protocol id. This error was found
by the following assertion in our transition test:
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Figure 5.13: Unit test results

validateTransition (E (Implementation StablyRevealed) fragment)
(E BeingEndorsed fragment') = do
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-- ...
getCurrentProtocolVersion (firstState fragment')
==! supersedesVersion (getProtocol updateSpec)

getCurrentProtocolId (firstState fragment')
==! supersedesId (getProtocol updateSpec)

Votes on rejected or expired proposals We found out that the implementation allowed votes on rejected or
expired proposals. This was detected by the following assertion:

validateTransition (E (SIP StablyRevealed) fragment)
(E (SIP (Is what)) fragment') = do

validateVerdictEvent (getSIP updateSpec)
(getSIPVoteOf (getSIPId updateSpec))
fragment
(firstEvent fragment')
what

-- We shouldn't see any actions in @fragment'@, save for implementation
-- submissions, which the system can¬ check.
onlyImplementationSubmissionAllowed updateSpec fragment'

Queued proposals that should have been removed If a proposal is queued, then it must be possible for the
protocol version it supersedes to be activated. If this is not the case, we know that this queued proposal can
never be activated either. Our tests found that the implementation left proposals in the queue that could never be
adopted. The following assertion led to the discovery of this bug:

validateTransition (E (Implementation StablyRevealed) fragment)
(E Queued fragment') = do

-- ...

-- the current version, or there is a candidate proposal with higher or
-- the same priority.
( getCurrentProtocolVersion (firstState fragment')

< supersedesVersion (getProtocol updateSpec)
∨
exists
(candidatesAtTheBeginningOf fragment' `withIdDifferentFrom` updateSpec)
(λ protocol →

version protocol < version (getProtocol updateSpec)))

5.4 Conclusions

In this section we have seen how the requirements defined in [PRI20a, PRI20d] were validated by means of:

– unit tests

– property based tests

– back of the envelope calculations

– micro-benchmarks

– integration tests
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– benchmarks of the integrated prototype

We found the unit tests to be quite useful for illustrating how the protocol works when communicating with
other stakeholders (project and product managers, engineers, researchers, etc).

For writing and running the property based tests, we developed a custom framework for property testing
system traces. This framework improves upon the work done at IOHK, and can be readily used for testing other
ledger components.

With our extensive set of unit and property test we were able to detect several bugs before the integration
with Cardano took place. After testing the integrated prototype we did not find any errors, which attest to the
importance of testing early.

The results obtained in our back of the envelope calculations were confirmed by our experimental results.
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Chapter 6

Conclusions

This document provided a validation report for all the use-cases in the PRIViLEDGE project, about achieving
the validation criteria [PRI20a] based on the requirements [PRI18]. All contributions rely on DLT or secure
multi-party computation to achieve use-case specific goals in the context where the privacy is paramount. Differ-
ent aspects were validated depending on the use-case: compliance, functional requirements, security, usability,
performance, interoperability. Different methods for validation were applied as chosen to be fit by the use-case
partners. The report covers four mature research prototypes with potential to evolve into a part of the given
ecosystem, be it software updates for Cardano, online voting with TIVI or university diploma / health insurance
records management.
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